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Abstract

This study investigated whether increasing the normality of an
attribute using Box-Cox transformation improves Bayesian Maximum
Entropy (BME) prediction accuracy. Furthermore, we examined if
BME accuracy is affected by sample size or spatial dependence. For
hard data, the unconditional sequential approach was used to simulate
symmetric data (skewness = 0) and data positively skewed (skewness:
1, 3, 6, and 9) with sample size ranging from 100 to 500 at the interval
length of 50. Soft data was randomly distributed throughout a square
of unit size and a width of 1.5. Data was then transformed using
Box-Cox transformation. The prediction accuracy was assessed using
the Mean Square Error (MSE) and bias, and transformation methods
were compared using the Multivariate Analysis of Variance
(MANOVA). The results showed BME accuracy is affected by
transformation methods but not the sample size and the spatial
dependency. However, in comparing the transformed data with the
untransformed data, the MSE and bias of the untransformed
data (lambda = 1) were closer to zero than the transformed
data (lambda = 1). As a result, we concluded that BME is robust to

skewness, sample size, and spatial dependency.
1. Introduction

Understanding a system for its improvement based on sound proposals
calls for statistical analysis. Depending on the statistical methods to
be applied, the data can be summarized using descriptive statistics and
examined through statistical inference to test the underlying hypotheses. One
of the most frequent hypotheses of statistical tests is the normality of the
dataset [1]. Normality is generally characterized by skewness and kurtosis,
but the commonly used formal normality tests are: Shapiro-Wilk test and
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Kolmogorov Smirnov test [2]. Statistical methods (e.g., multiple regression,
ANOVA) are often sensitive to non-normality, heteroscedasticity, and
sample size. Data transformations are sometimes required to improve
the accuracy of statistical methods, and then the results must be back

transformed prior to interpretation.

In geostatistics, the classical method known as kriging is highly sensitive
to dataset normality [3]. A transformation on raw dataset is performed to
improve its normality and therefore guarantees the prediction accuracy [4].
From this perspective, the logarithmic transformation has been used,
regardless of the data nature [5-7]. Since the accuracy of kriging based
estimations is frequently criticized due to their failure to handle soft data, the
Bayesian Maximum Entropy (BME) [8, 9] was proposed to improve
geostatistical estimation [10]. BME approach is built upon a strong
mathematical procedure [11, 12].

As a result, BME might be robust regardless of data skewness or sample
size [13-15]. However, BME framework hinges on the covariance and
variogram models [13], while the variogram, which measures the spatial
dependency, might be strongly affected by the data skewness and sample
size [16]. Thus, it is demonstrated that variogram calculation for highly
skewed data results in an underestimation of spatial dependency [17],
whereas an accountable variogram calculation in the spatial analysis process
requires a minimum sample size of 100 [18]. The degree of skewness
influences the measure of entropy; when the data is highly skewed, the
measure of entropy is underestimated [7]. In BME analysis, the choice
between raw skewed data (untransformed) prior to BME application, plus
back-transformation afterwards, and no application of any transformation,
regardless of the nature of the data, occurs [5, 19]. In general, whether a
statistical test is considered robust to non-normal data or nonparametric,
taking dataset normality into account can improve the accuracy of the results
[20]. This study focuses on factors that are countable for better estimation
under the BME application. Therefore, relying on the quality of the raw
dataset, we provided answers to the following research questions: What are
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the impacts of using Box-Cox transformation on BME accuracy? Are
the effects of managing data normality through Box-Cox transformations
influenced by sample size or spatial dependency?

2. Background on the BME

The Bayesian Maximum Entropy (BME) is a robust geostatistical
approach designed for spatio-temporal prediction and mapping [8, 9]. BME
provides mathematical framework for including different data types into
mapping process [12]. The available knowledge is denoted by K, and
expressed as:

K=GUS,

where G, the General Knowledge base, represents the general information
(e.g., previous experiences, beliefs, etc.). S denotes the site-specific
knowledge base. It represents data collected on a natural variable at a
specific site. It is divided into two: hard data for exact measurement of the
variables and soft data as data with uncertainties [21, 13]. The BME analysis
involves three steps, namely: the prior stage, the meta-prior stage and the
integration or posterior stage [12, 22, 23]. At the prior stage, only data on
general knowledge is collected and processed to build the prior G pdf
fG(Xmap)- At the posterior stage, the prior knowledge pdf fg(xmqp) is

updated with the site-specific knowledge S following the total knowledge

K =GUS. For a given Sxg,,, the Bayes conditionalization rule is

applied to fg (xmap) to produce the posterior pdf f; (x;) as follows:

/6 (fie> (Xdata))
J6(Xdata)

The posterior pdf expression varies with the soft data. Once the posterior

JeGe) = fo(fi/(Xdata)) = (1)

pdf is obtained, the conditional mean, mode, median, etc., can be derived.
Moreover, the uncertainty can be assessed using the variance of the posterior
pdf, or better still, the BME confidence interval [22, 23].
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3. Background on Box-Cox Transformation

In the process of the BME application, it is noticed that the Box-Cox

transformation with several lambda (L) values is widely applied to address

the issue of data normality [7, 23-26]. Box-Cox transformation [27] is a
transformation method that belongs to the power transformation method
family [28]. It includes all traditional methods (e.g., square root, log, inverse,
cubic root) and easily leads to an optimal normalizing transformation
without the need of exploring several transformation techniques to determine
the best option [20]. The article [1] suggested that a method of
transformation can be selected based on the relationship between the
standard deviation and the mean. Box-Cox transformation offers the
possibility of simultaneously correcting normality, linearity, and

homoscedasticity in a dataset. The method can be expressed as:

xk

-1
glx, M) ="
log(x), ifA=0,

if A #0, )

where y is the Box-Cox transformation of x, A is the configuration
parameter, and x is the value of any attribute in a given dataset. Thus, it
increases the variance of homogeneity to improve the accuracy of prediction
[28]. According to Osborne [20], A values can correct non-normality of a
variable regardless of whether it is negatively or positively skewed. Most
traditional transformation methods are included in Box-Cox transformation:

no transformation (A =1), square root transformation (A = 0.50), cubic
root transformation (A = 0.33), fourth root transformation (A = 0.25),
natural log transformation (A = 0), reciprocal square root transformation
(A =-0.50), reciprocal (inverse) transformation (A = —1.00) and among

others. The value of the A often varies between —5 and 5. In this study, we
considered the following lambda values: -3, -2, -1 -0.5, 0, 0.5, 1, 2 and 3.
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4. Methodology

The effect of data transformation on BME was evaluated by testing data
with different sizes, skewnesses and levels of spatial dependency. Sample
sizes considered were 100, 150, 200, 250, 300, 350, 400, 450 and 500.
Symmetric data (skewness = 0) and data positively skewed by 1, 3, 6, and 9
were assessed. Data with strong (0.025), moderate (0.25-0.77), and weak
(> 0.75) relative nugget effects (NE) [29], which represents the spatial
dependency were used. It is denoted by S and expressed as:

__ %
S_co+c’ 3)

where ¢ is the partial sill, S is the spatial dependency level, and ¢ is the

nugget. Each spatial dependency level and the ranges were repeated three
times as shown in Table 1.

Table 1. Simulation parameters

Spatial dependency  Repetitions ~ Nugget Psill Range Model

1 0.9 0.1 6 Spherical

Strong 2 0.8 0.2 5 Spherical

3 0.7 0.3 4 Spherical

1 0.5 0.5 6 Spherical

Moderate 2 0.4 0.6 5 Spherical

3 0.3 0.7 4 Spherical

1 0.2 0.8 6 Spherical

Weak 2 0.1 0.9 5 Spherical

3 0.05 0.95 4 Spherical

4.1. Simulation design

A spatial random field was simulated using a spherical covariance model
with a sill ¢y +c =1. It ranges over three spatial dependency levels
presented in Table 1 [7, 30]. Two types of data were simulated, namely: hard
and soft data. Hard data was simulated using the unconditional sequential
simulation method (see simulib from the BMELIib library, [13]). For each
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spatial dependency level, 50,000 independent realizations of a standard
Gaussian variable were generated, using R 4.0.2 software [31]. A constant
(range) was added to ensure that, the minimum value was always positive,

and each value was then raised to a power (o). This exponentiation allows

to generate a highly positively skewed variable. The data were then

standardized to zero mean and unit variance [32].

The simulation function was based on the following arguments: Alpha
(the exponentiation power to generate highly skewed variables), skewness
(the variable with this skewness is returned out of the 50,000 variables
simulated), sample size, nugget effect, range, partial sill and variogram
model. Interval-type soft data were assumed to be randomly distributed
across a square of unit size, with a width of 1.5. In addition, a function was

built to generate location parameters from a shapefile of 1ha extracted from

the map of Benin Republic (www.diva-gis.org) by specifying the soft data

size and the hard data size.
4.2. Data analysis

Firstly, descriptive statistics (means, skewness, kurtosis, maximum and
minimum) were used to summarize the raw data simulated. The datasets
were transformed using Box-Cox transformation with lambda values equal
-3,-2,-1,-0.5,-0.33, -0.25, 0, 0.25, 0.33, 0.5, 1, 2 and 3, respectively, to
check how these methods improve the normality of raw data. Secondly,

BME method was applied on each transformed data (lambda = 1) as well as

untransformed data (lambda = 1) and the accuracy of the prediction was
assessed by computing the Mean Square Error (MSE) and the bias [7]. The
best prediction method is expected to have MSE close to 0 [33]. Thus,
transformed variables with MSE greater than 1 were excluded. Thirdly,
descriptive statistics (means, skewness, kurtosis, etc) were computed on
BME predictions. The average MSE and the bias were calculated for

different levels of spatial dependency, degree of skewness and the
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transformation methods (lambda). The MSE and bias were plotted
graphically using the ggplot2 package of the R 4.0.2 software [31]. Finally,
Multivariate Analysis of Variance (MANOVA) was applied to assess the
effect of Box-Cox transformation on BME performance. The response
variables were MSE and bias and the explanatory variables were lambda,

sample size and spatial dependence.
5. Results

5.1. Data transformation method

Table 2 shows that most lambda values do not improve normality in
terms of skewness and kurtosis. However, regardless of the spatial
dependency level, lambda values (0 to 0.5) improved the normality of highly
skewed data (3 t0 9).

Table 2. Skewness and kurtosis values according to lambda values of the

Box-Cox transformation

Skewness =1 | Skewness =3 | Skewness =6 | Skewness =9

Lambda
Sk Kurt Sk Kurt Sk Kurt Sk Kurt
S1

1 1.01 4.03 3.04 19.12 6.10 51.10 9.19 89.26

-3 -6.86 | 49.10 | -9.85 98.01 -5.55 | 32.01 | -9.06 | 86.33

-2 —6.44 | 44.16 | -9.84 97.93 -5.48 | 31.26 | -8.17 | 72.23

-1 -4.81 | 2821 | -9.28 90.32 —4.80 | 2591 | —-6.10 | 43.85
-0.5 -2.84 | 12.86 | —-6.11 49.53 -3.42 | 1590 | -3.79 | 21.39

-0.33 -2.15 8.68 —4.26 28.99 -2.74 | 11.75 | -2.76 14.40
—0.25 -1.86 7.13 -3.44 21.11 —2.40 9.95 -2.24 11.73

0 -1.08 4.00 -1.50 7.30 -1.27 5.87 -0.38 8.13
0.25 —0.47 2.75 -0.31 4.05 0.03 5.76 2.30 18.55
0.33 —0.30 2.61 0.01 4.07 0.53 7.05 3.35 26.12
0.5 0.05 2.59 0.67 5.30 1.78 12.78 5.60 46.80

2 2.54 9.45 7.82 70.95 9.54 93.88 9.84 97.89

3 3.36 13.83 9.44 92.46 9.83 91.72 9.85 98.01
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S2
1 1.02 3.66 3.05 16.34 6.10 50.90 8.78 84.01
-3 -9.85 | 98.01 | -9.85 97.96 -9.82 | 97.68 | -8.22 | 72.89
-2 -9.85 | 98.01 | —-9.78 97.09 -9.62 | 94.79 | -7.31 | 58.39
-1 -9.84 | 97.89 | -8.31 76.96 -7.54 | 65.73 | -5.88 | 38.82
0.5 -9.40 | 9197 | —4.56 31.57 —4.19 | 2574 | -398 | 21.38
-0.33 -8.30 | 77.14 | -3.09 17.68 -2.98 | 15.09 | 297 | 14.26
-0.25 -7.29 | 64.01 | —2.49 13.03 —2.48 | 1147 | 247 | 11.29
0 -3.01 | 18.12 | -1.09 5.32 -1.15 5.24 -0.91 5.65
0.25 —0.78 4.33 —-0.09 3.81 0.10 4.92 1.04 9.47
0.33 —-0.44 3.39 0.21 4.06 0.56 6.14 1.89 14.18
0.5 0.07 2.75 0.87 5.52 1.73 11.69 4.03 31.04
2 2.23 7.61 6.07 42.29 9.56 94.11 9.83 97.81
3 2.97 11.62 7.16 55.82 9.83 97.72 9.85 98.01
S3
1 1.02 3.72 3.04 18.05 6.09 51.67 8.44 79.04
-3 -8.69 | 81.26 | —-9.24 89.88 -9.85 | 97.97 | -7.14 | 54.14
-2 -7.40 61.63 -8.13 72.78 -9.78 97.09 —6.60 46.78
-1 -5.22 | 3272 | -5.61 38.15 -823 | 7585 | —4.80 | 28.17
-0.5 -3.31 15.78 -3.55 17.79 —4.66 31.17 -2.93 13.08
-0.33 -2.55 | 10.82 | -2.75 12.23 -332 | 1798 | —2.23 9.01
~0.25 -2.20 8.88 -2.37 10.05 —2.78 | 1354 | -1.90 7.49
0 -1.24 4.71 -1.26 5.39 -1.41 5.97 -0.73 4.99
0.25 —0.49 2.94 -0.26 3.86 -0.16 5.07 1.06 9.41
0.33 -0.29 2.71 0.05 4.00 0.31 6.14 1.85 13.72
0.5 0.10 2.57 0.73 5.28 1.51 11.47 3.84 28.77
2 2.35 8.42 7.37 64.44 9.61 94.87 9.72 95.63
3 3.19 12.93 9.21 90.11 9.84 97.84 9.75 96.00
Legend: Sk: skewness; Kurt: kurtosis; S1: strong; S2: Moderate S3: weak

5.2. Effect of Box-Cox transformation on BME accuracy

Significant differences were observed in the MSE (p-value < 0.001) and

bias (p-value < 0.001). This suggests that Box-Cox transformation with

various lambdas induces significant changes on BME accuracy.
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Table 3. Results of MANOVA illustrating the effect of data transformation
on BME

Response Sources DF F-value Pr(>F)
L 14 209.041 <0.001

MSE Sk 4 105.76 <0.001
L:Sk 35 12.10 <0.001

L 14 181.54 <0.001

Bias Sk 4 0.65 0.6245
L:Sk 35 4.67 <0.001

L = Lambda, Sk = skewness

Large wvariations of the MSE and bias were induced by the
transformation methods (Table 3). Data with skewness 1 produced more
points below MSE = 0.5 compared to a higher degree of skewness (greater
than 3) (Figure 1). This indicates that higher degrees of skewness have a
greater impact on BME than lower degrees of skewness. Regardless of the
degree of skewness, untransformed data (lambda = 1) produced lower MSE
and bias (Figure 1). This demonstrates that despite differences in MSE and
bias due to the degree of skewness and data transformation techniques, BME
applied to untransformed data is more accurate than BME applied to
transformed data. To keep the plot size (Figure 1) reasonable, large values of

MSE (greater than 1) were excluded.

o ’ A \\\ Parameter
3 Y . Vv
0.0 \ = & \ / o— ENERE=T
ACE Lo AARAA \ \
N

9, B0 QDO N LD % 0 BP QOB D N U 2 U B DD D N UD 2 U DD VDD NUD
SCGANAG TN TN SCUINA

Lambda

Figure 1. Variations of MSE and bias as impact of data transformation on
the BME.
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5.3. Effect of sample size and Box-Cox transformation technique on
BME accuracy

Data transformation methods significantly affected both MSE and bias
(p <0.001). The sample size, however, did not significantly affect either the
MSE (p-value = 0.1657) or the bias (p-value = 0.1793) of the prediction.
Additionally, the interaction between sample size and transformation
techniques showed no significant effect on either MSE (p-value = 0.9145) or
bias (p-value = 0.981). These results suggest that BME is robust to changes

in sample size.

Table 4. Results of the MANOVA illustrating the effect of sample size and

data transformation on BME

Response Source Df F-value Pr(>F)
L 14 158.2379 <0.001

MSE Ss 7 1.4909 0.1657
L:Ss 96 0.8064 0.9145

L 14 169.9825 <0.001

Bias Ss 7 1.4539 0.1793
L:Ss 96 0.4966 1.0000

Ss: Sample size, L: Lambda

5.4. Effect of spatial dependency and data transformation techniques on

BME accuracy

The MSE of transformation technique is not affected by the spatial
dependency (p-value = 0.9454) but highly affected by the interaction
between transformation technique and spatial dependence (p-value < 0.001).
The prediction bias is affected by the spatial dependency level with no

interaction between the transformation techniques and spatial dependence.
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Table 5. Results of the MANOVA illustrating the effect of spatial
dependence data

Response Source Df F-value Pr(>F)
L 14 162.0512 <0.001

MSE SD 2 0.0561 0.9454
L:SD 27 2.7955 <0.001
L 14 173.1664 <0.001

Bias SD 2 3.3335 0.035
L:SD 27 09115 0.5961

Figures 2 and 3 depict the differences in MSE and bias due to spatial
dependence. It was observed that the variation of spatial dependence induced
changes in the MSE and bias of BME prediction. In the MSE, for moderate
and strong spatial dependence, most values were below 0.4. Despite this
variation, the best lambda value was 1 (no transformation) irrespective of the

spatial dependence.

Moderate Sfrong Weak

084

2 0.6 Parameter
3
< * WMSE
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Lambda

Figure 2. Variation of the prediction’s MSE according to sample size and

data transformation technique.

For relative bias variation by spatial dependence, the best lambda values
are —2 and 1 (Figure 3). Despite the significance difference observed in
Table 5, there was a lower variation in bias (—0.22 to —0.25) for spatial
dependence, with moderate spatial dependence producing more accurate

results.
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Figure 3. Variation of MSE according to the degree of spatial dependency.
6. Discussion and Conclusion

Bayesian Maximum Entropy (BME) is mostly applied to continuous
variables [34-36] and discrete variables [37, 38]. In essence, a transformation
is applied when data is skewed [7, 23-25]. Data transformation, as part of the
pre-processing phase, plays an important role in ensuring data quality prior
to data analysis [39]. In this study, an empirical assessment of the effect of
data transformation techniques derived from Box-Cox family was carried
out. After applying Box-Cox transformation with different lambda values to
skewed data, we noticed that not all Box-Cox transformation methods do
correct normality, this includes lambda values such as -3, —0.5, —0.33, —0.25,
0, 1, 2 and 3. However, lambda values such as 0.25, 0.33 and 0.5 improved
the normality irrespective of the spatial dependency level. This finding was
consistent with the previous works of [40] on trialeurodes vaporariorum
populations in which data was transformed.

Firstly, to determine if improving the normality of a dataset can improve
the prediction accuracy of BME, our results showed that the interaction
between skewness and transformation techniques significantly affected
both MSE and bias (p < 0.001 for both). This implies that BME accuracy
varies with skewness and transformation techniques. However, when data
transformation methods were compared by the degree of skewness, the
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untransformed data (lambda = 1) gave lower MSE regardless of the degree
of skewness. This suggests that data transformation can improve data
normality but not BME prediction accuracy. As a result, BME can be
considered robust to skewness, the transformation might not be necessary
when the data is skewed. These results align with Christakos’s discussions
on BME robustness [8, 13].

Secondly, we investigated if the accuracy of data transformation
techniques applied to BME was affected by sample size. We found that the
sample size has no significant effect on the MSE and bias of prediction
with p-values of 0.166 and 0.179, respectively. Furthermore, on the MSE
(p-value = 0.915) and bias (p-value = 0.981), the sample size showed no
interaction with data transformation techniques. This finding suggested that
the choice of sample size and data transformation had no effect on BME

performance.

Finally, we evaluated if the accuracy of data transformation techniques
applied to BME is influenced by the spatial dependency of the dataset. Our
findings revealed that Box-Cox transformation and spatial dependence had
a significant impact on the MSE (p-value 0.001) but not the bias of the
prediction (p-value = 0.596). However, when we compared the performance
of transformed data to untransformed data, we discovered that BME applied
to untransformed variables (lambda = 1) generated better results than

transformed variables regardless of the spatial dependency.

In conclusion, our study revealed that Box-Cox transformation can
enhance the dataset normality, which is consistent with prior research
[7, 23-25]. However, we found no indication that (1) enhancing normality
improves BME prediction accuracy, (2) a given sample size improves BME
prediction accuracy after transformation, or (3) any spatial dependence level
is more accurate. As a result, BME can be considered robust to sample size

and spatial dependency even when the data is skewed.
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