
 

JP Journal of Biostatistics 

© 2025 Pushpa Publishing House, Prayagraj, India 
https://pphmjopenaccess.com 
https://doi.org/10.17654/0973514325006 
Volume 25, Number 1, March 2025, Pages 127-144 P-ISSN: 0973-5143

 

Received: July 13, 2024;  Accepted: August 27, 2024 

Keywords and phrases: Box-Cox transformation, skewness, spatial dependence, Bayesian 

maximum entropy. 

Communicated by K. K. Azad 

How to cite this article: Emmanuel Ehnon Gongnet, Romaric Vihotogbé, Codjo Emile 

Agbangba, Tranquillin Affossogbé, Koye Djondang and Romain Glèlè Kakaï, Impact of Box-

Cox transformation technique on the Bayesian maximum entropy (BME) prediction accuracy, 

JP Journal of Biostatistics 25(1) (2025), 127-144. https://doi.org/10.17654/0973514325006 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Published Online: December 10, 2024 

IMPACT OF BOX-COX TRANSFORMATION 

TECHNIQUE ON THE BAYESIAN MAXIMUM 

ENTROPY (BME) PREDICTION ACCURACY 

 



Emmanuel Ehnon Gongnet et al. 128 

 

Abstract 

This study investigated whether increasing the normality of an 

attribute using Box-Cox transformation improves Bayesian Maximum 

Entropy (BME) prediction accuracy. Furthermore, we examined if 

BME accuracy is affected by sample size or spatial dependence. For 

hard data, the unconditional sequential approach was used to simulate 

symmetric data (skewness  0) and data positively skewed (skewness: 

1, 3, 6, and 9) with sample size ranging from 100 to 500 at the interval 

length of 50. Soft data was randomly distributed throughout a square 

of unit size and a width of 1.5. Data was then transformed using    

Box-Cox transformation. The prediction accuracy was assessed using 

the Mean Square Error (MSE) and bias, and transformation methods 

were compared using the Multivariate Analysis of Variance 

(MANOVA). The results showed BME accuracy is affected by 

transformation methods but not the sample size and the spatial 

dependency. However, in comparing the transformed data with the 

untransformed data, the MSE and bias of the untransformed           

data (lambda  1) were closer to zero than the transformed              

data  .1lambda   As a result, we concluded that BME is robust to 

skewness, sample size, and spatial dependency. 

1. Introduction 

Understanding a system for its improvement based on sound proposals 

calls for statistical analysis. Depending on the statistical methods to                  

be applied, the data can be summarized using descriptive statistics and 

examined through statistical inference to test the underlying hypotheses. One 

of the most frequent hypotheses of statistical tests is the normality of the 

dataset [1]. Normality is generally characterized by skewness and kurtosis, 

but the commonly used formal normality tests are: Shapiro-Wilk test and 
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Kolmogorov Smirnov test [2]. Statistical methods (e.g., multiple regression, 

ANOVA) are often sensitive to non-normality, heteroscedasticity, and 

sample size. Data transformations are sometimes required to improve          

the accuracy of statistical methods, and then the results must be back 

transformed prior to interpretation. 

In geostatistics, the classical method known as kriging is highly sensitive 

to dataset normality [3]. A transformation on raw dataset is performed to 

improve its normality and therefore guarantees the prediction accuracy [4]. 

From this perspective, the logarithmic transformation has been used, 

regardless of the data nature [5-7]. Since the accuracy of kriging based 

estimations is frequently criticized due to their failure to handle soft data, the 

Bayesian Maximum Entropy (BME) [8, 9] was proposed to improve 

geostatistical estimation [10]. BME approach is built upon a strong 

mathematical procedure [11, 12]. 

As a result, BME might be robust regardless of data skewness or sample 

size [13-15]. However, BME framework hinges on the covariance and 

variogram models [13], while the variogram, which measures the spatial 

dependency, might be strongly affected by the data skewness and sample 

size [16]. Thus, it is demonstrated that variogram calculation for highly 

skewed data results in an underestimation of spatial dependency [17], 

whereas an accountable variogram calculation in the spatial analysis process 

requires a minimum sample size of 100 [18]. The degree of skewness 

influences the measure of entropy; when the data is highly skewed, the 

measure of entropy is underestimated [7]. In BME analysis, the choice 

between raw skewed data (untransformed) prior to BME application, plus 

back-transformation afterwards, and no application of any transformation, 

regardless of the nature of the data, occurs [5, 19]. In general, whether a 

statistical test is considered robust to non-normal data or nonparametric, 

taking dataset normality into account can improve the accuracy of the results 

[20]. This study focuses on factors that are countable for better estimation 

under the BME application. Therefore, relying on the quality of the raw 

dataset, we provided answers to the following research questions: What are 
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the impacts of using Box-Cox transformation on BME accuracy? Are              

the effects of managing data normality through Box-Cox transformations 

influenced by sample size or spatial dependency? 

2. Background on the BME 

The Bayesian Maximum Entropy (BME) is a robust geostatistical 

approach designed for spatio-temporal prediction and mapping [8, 9]. BME 

provides mathematical framework for including different data types into 

mapping process [12]. The available knowledge is denoted by K, and 

expressed as: 

,SGK ∪  

where G, the General Knowledge base, represents the general information 

(e.g., previous experiences, beliefs, etc.). S denotes the site-specific 

knowledge base. It represents data collected on a natural variable at a 

specific site. It is divided into two: hard data for exact measurement of the 

variables and soft data as data with uncertainties [21, 13]. The BME analysis 

involves three steps, namely: the prior stage, the meta-prior stage and the 

integration or posterior stage [12, 22, 23]. At the prior stage, only data on 

general knowledge is collected and processed to build the prior G pdf 

 .mapxfG  At the posterior stage, the prior knowledge pdf  mapxfG  is 

updated with the site-specific knowledge S following the total knowledge 

.SGK ∪  For a given ,dataxS  the Bayes conditionalization rule is 

applied to  mapxfG  to produce the posterior pdf  kk xf  as follows: 

        
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The posterior pdf expression varies with the soft data. Once the posterior 

pdf is obtained, the conditional mean, mode, median, etc., can be derived. 

Moreover, the uncertainty can be assessed using the variance of the posterior 

pdf, or better still, the BME confidence interval [22, 23]. 
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3. Background on Box-Cox Transformation 

In the process of the BME application, it is noticed that the Box-Cox 

transformation with several lambda    values is widely applied to address 

the issue of data normality [7, 23-26]. Box-Cox transformation [27] is a 

transformation method that belongs to the power transformation method 

family [28]. It includes all traditional methods (e.g., square root, log, inverse, 

cubic root) and easily leads to an optimal normalizing transformation 

without the need of exploring several transformation techniques to determine 

the best option [20]. The article [1] suggested that a method of 

transformation can be selected based on the relationship between the 

standard deviation and the mean. Box-Cox transformation offers the 

possibility of simultaneously correcting normality, linearity, and 

homoscedasticity in a dataset. The method can be expressed as: 

  
 










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

,0if,log

,0if,
1

,

x

x
xg  (2) 

where y is the Box-Cox transformation of x,   is the configuration 

parameter, and x is the value of any attribute in a given dataset. Thus, it 

increases the variance of homogeneity to improve the accuracy of prediction 

[28]. According to Osborne [20],   values can correct non-normality of a 

variable regardless of whether it is negatively or positively skewed. Most 

traditional transformation methods are included in Box-Cox transformation: 

no transformation  ,1  square root transformation  ,50.0  cubic 

root transformation  ,33.0  fourth root transformation  ,25.0  

natural log transformation  ,0  reciprocal square root transformation 

 ,50.0  reciprocal (inverse) transformation  00.1  and among 

others. The value of the   often varies between –5 and 5. In this study, we 

considered the following lambda values: –3, –2, –1 –0.5, 0, 0.5, 1, 2 and 3. 
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4. Methodology 

The effect of data transformation on BME was evaluated by testing data 

with different sizes, skewnesses and levels of spatial dependency. Sample 

sizes considered were 100, 150, 200, 250, 300, 350, 400, 450 and 500. 

Symmetric data (skewness  0) and data positively skewed by 1, 3, 6, and 9 

were assessed. Data with strong  ,025.0  moderate (0.25-0.77), and weak 

 75.0  relative nugget effects (NE) [29], which represents the spatial 

dependency were used. It is denoted by S and expressed as: 

 ,
0

0
cc

c
S


  (3) 

where c is the partial sill, S is the spatial dependency level, and 0c  is the 

nugget. Each spatial dependency level and the ranges were repeated three 

times as shown in Table 1. 

Table 1. Simulation parameters 

Spatial dependency Repetitions Nugget Psill Range Model 

1 0.9 0.1 6 Spherical 

2 0.8 0.2 5 Spherical Strong 

3 0.7 0.3 4 Spherical 

1 0.5 0.5 6 Spherical 

2 0.4 0.6 5 Spherical Moderate 

3 0.3 0.7 4 Spherical 

1 0.2 0.8 6 Spherical 

2 0.1 0.9 5 Spherical Weak 

3 0.05 0.95 4 Spherical 

4.1. Simulation design 

A spatial random field was simulated using a spherical covariance model 

with a sill .10  cc  It ranges over three spatial dependency levels 

presented in Table 1 [7, 30]. Two types of data were simulated, namely: hard 

and soft data. Hard data was simulated using the unconditional sequential 

simulation method (see simulib from the BMELib library, [13]). For each 
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spatial dependency level, 50,000 independent realizations of a standard 

Gaussian variable were generated, using R 4.0.2 software [31]. A constant 

(range) was added to ensure that, the minimum value was always positive, 

and each value was then raised to a power  .  This exponentiation allows 

to generate a highly positively skewed variable. The data were then 

standardized to zero mean and unit variance [32]. 

The simulation function was based on the following arguments: Alpha 

(the exponentiation power to generate highly skewed variables), skewness 

(the variable with this skewness is returned out of the 50,000 variables 

simulated), sample size, nugget effect, range, partial sill and variogram 

model. Interval-type soft data were assumed to be randomly distributed 

across a square of unit size, with a width of 1.5. In addition, a function was 

built to generate location parameters from a shapefile of 1ha extracted from 

the map of Benin Republic (www.diva-gis.org) by specifying the soft data 

size and the hard data size. 

4.2. Data analysis 

Firstly, descriptive statistics (means, skewness, kurtosis, maximum and 

minimum) were used to summarize the raw data simulated. The datasets 

were transformed using Box-Cox transformation with lambda values equal       

–3, –2, –1, –0.5, –0.33, –0.25, 0, 0.25, 0.33, 0.5, 1, 2 and 3, respectively, to 

check how these methods improve the normality of raw data. Secondly, 

BME method was applied on each transformed data  1lambda   as well as 

untransformed data (lambda  1) and the accuracy of the prediction was 

assessed by computing the Mean Square Error (MSE) and the bias [7]. The 

best prediction method is expected to have MSE close to 0 [33]. Thus, 

transformed variables with MSE greater than 1 were excluded. Thirdly, 

descriptive statistics (means, skewness, kurtosis, etc) were computed on 

BME predictions. The average MSE and the bias were calculated for 

different levels of spatial dependency, degree of skewness and the 
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transformation methods (lambda). The MSE and bias were plotted 

graphically using the ggplot2 package of the R 4.0.2 software [31]. Finally, 

Multivariate Analysis of Variance (MANOVA) was applied to assess the 

effect of Box-Cox transformation on BME performance. The response 

variables were MSE and bias and the explanatory variables were lambda, 

sample size and spatial dependence. 

5. Results 

5.1. Data transformation method 

Table 2 shows that most lambda values do not improve normality in 

terms of skewness and kurtosis. However, regardless of the spatial 

dependency level, lambda values (0 to 0.5) improved the normality of highly 

skewed data (3 to 9). 

Table 2. Skewness and kurtosis values according to lambda values of the 

Box-Cox transformation 

Skewness  1 Skewness  3 Skewness  6 Skewness  9 
Lambda 

Sk Kurt Sk Kurt Sk Kurt Sk Kurt 

S1 

1 1.01 4.03 3.04 19.12 6.10 51.10 9.19 89.26 

–3 –6.86 49.10 –9.85 98.01 –5.55 32.01 –9.06 86.33 

–2 –6.44 44.16 –9.84 97.93 –5.48 31.26 –8.17 72.23 

–1 –4.81 28.21 –9.28 90.32 –4.80 25.91 –6.10 43.85 

–0.5 –2.84 12.86 –6.11 49.53 –3.42 15.90 –3.79 21.39 

–0.33 –2.15 8.68 –4.26 28.99 –2.74 11.75 –2.76 14.40 

–0.25 –1.86 7.13 –3.44 21.11 –2.40 9.95 –2.24 11.73 

0 –1.08 4.00 –1.50 7.30 –1.27 5.87 –0.38 8.13 

0.25 –0.47 2.75 –0.31 4.05 0.03 5.76 2.30 18.55 

0.33 –0.30 2.61 0.01 4.07 0.53 7.05 3.35 26.12 

0.5 0.05 2.59 0.67 5.30 1.78 12.78 5.60 46.80 

2 2.54 9.45 7.82 70.95 9.54 93.88 9.84 97.89 

3 3.36 13.83 9.44 92.46 9.83 97.72 9.85 98.01 
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S2 

1 1.02 3.66 3.05 16.34 6.10 50.90 8.78 84.01 

–3 –9.85 98.01 –9.85 97.96 –9.82 97.68 –8.22 72.89 

–2 –9.85 98.01 –9.78 97.09 –9.62 94.79 –7.31 58.39 

–1 –9.84 97.89 –8.31 76.96 –7.54 65.73 –5.88 38.82 

–0.5 –9.40 91.97 –4.56 31.57 –4.19 25.74 –3.98 21.38 

–0.33 –8.30 77.14 –3.09 17.68 –2.98 15.09 –2.97 14.26 

–0.25 –7.29 64.01 –2.49 13.03 –2.48 11.47 –2.47 11.29 

0 –3.01 18.12 –1.09 5.32 –1.15 5.24 –0.91 5.65 

0.25 –0.78 4.33 –0.09 3.81 0.10 4.92 1.04 9.47 

0.33 –0.44 3.39 0.21 4.06 0.56 6.14 1.89 14.18 

0.5 0.07 2.75 0.87 5.52 1.73 11.69 4.03 31.04 

2 2.23 7.61 6.07 42.29 9.56 94.11 9.83 97.81 

3 2.97 11.62 7.16 55.82 9.83 97.72 9.85 98.01 

S3 

1 1.02 3.72 3.04 18.05 6.09 51.67 8.44 79.04 

–3 –8.69 81.26 –9.24 89.88 –9.85 97.97 –7.14 54.14 

–2 –7.40 61.63 –8.13 72.78 –9.78 97.09 –6.60 46.78 

–1 –5.22 32.72 –5.61 38.15 –8.23 75.85 –4.80 28.17 

–0.5 –3.31 15.78 –3.55 17.79 –4.66 31.17 –2.93 13.08 

–0.33 –2.55 10.82 –2.75 12.23 –3.32 17.98 –2.23 9.01 

–0.25 –2.20 8.88 –2.37 10.05 –2.78 13.54 –1.90 7.49 

0 –1.24 4.71 –1.26 5.39 –1.41 5.97 –0.73 4.99 

0.25 –0.49 2.94 –0.26 3.86 –0.16 5.07 1.06 9.41 

0.33 –0.29 2.71 0.05 4.00 0.31 6.14 1.85 13.72 

0.5 0.10 2.57 0.73 5.28 1.51 11.47 3.84 28.77 

2 2.35 8.42 7.37 64.44 9.61 94.87 9.72 95.63 

3 3.19 12.93 9.21 90.11 9.84 97.84 9.75 96.00 

  Legend: Sk: skewness; Kurt: kurtosis; S1: strong; S2: Moderate S3: weak 

5.2. Effect of Box-Cox transformation on BME accuracy 

Significant differences were observed in the MSE (p-value < 0.001) and 

bias (p-value < 0.001). This suggests that Box-Cox transformation with 

various lambdas induces significant changes on BME accuracy. 
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Table 3. Results of MANOVA illustrating the effect of data transformation 

on BME 

Response Sources DF F-value Pr (> F) 

L 14 209.041 < 0.001 

Sk 4 105.76 < 0.001 MSE 

L:Sk 35 12.10 < 0.001 

L 14 181.54 < 0.001 

Sk 4 0.65 0.6245 Bias 

L:Sk 35 4.67 < 0.001 

L  Lambda, Sk  skewness 

Large variations of the MSE and bias were induced by the 

transformation methods (Table 3). Data with skewness 1 produced more 

points below MSE  0.5 compared to a higher degree of skewness (greater 

than 3) (Figure 1). This indicates that higher degrees of skewness have a 

greater impact on BME than lower degrees of skewness. Regardless of the 

degree of skewness, untransformed data (lambda  1) produced lower MSE 

and bias (Figure 1). This demonstrates that despite differences in MSE and 

bias due to the degree of skewness and data transformation techniques, BME 

applied to untransformed data is more accurate than BME applied to 

transformed data. To keep the plot size (Figure 1) reasonable, large values of 

MSE (greater than 1) were excluded. 

 

Figure 1. Variations of MSE and bias as impact of data transformation on 

the BME. 
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5.3. Effect of sample size and Box-Cox transformation technique on 

BME accuracy 

Data transformation methods significantly affected both MSE and bias 

(p < 0.001). The sample size, however, did not significantly affect either the 

MSE (p-value = 0.1657) or the bias (p-value = 0.1793) of the prediction. 

Additionally, the interaction between sample size and transformation 

techniques showed no significant effect on either MSE (p-value = 0.9145) or 

bias (p-value = 0.981). These results suggest that BME is robust to changes 

in sample size. 

Table 4. Results of the MANOVA illustrating the effect of sample size and 

data transformation on BME 

Response Source Df F-value Pr (> F) 

L 14 158.2379 < 0.001 

Ss 7 1.4909 0.1657 MSE 

L:Ss 96 0.8064 0.9145 

L 14 169.9825 < 0.001 

Ss 7 1.4539 0.1793 Bias 

L:Ss 96 0.4966 1.0000 

Ss: Sample size, L: Lambda 

5.4. Effect of spatial dependency and data transformation techniques on 

BME accuracy 

The MSE of transformation technique is not affected by the spatial 

dependency (p-value  0.9454) but highly affected by the interaction 

between transformation technique and spatial dependence (p-value ≤ 0.001). 

The prediction bias is affected by the spatial dependency level with no 

interaction between the transformation techniques and spatial dependence. 
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Table 5. Results of the MANOVA illustrating the effect of spatial 

dependence data 

Response Source Df F-value Pr (> F) 

L 14 162.0512 < 0.001 

SD 2 0.0561 0.9454 MSE 

L:SD 27 2.7955 < 0.001 

L 14 173.1664 < 0.001 

SD 2 3.3335 0.035 Bias 

L:SD 27 0.9115 0.5961 

Figures 2 and 3 depict the differences in MSE and bias due to spatial 

dependence. It was observed that the variation of spatial dependence induced 

changes in the MSE and bias of BME prediction. In the MSE, for moderate 

and strong spatial dependence, most values were below 0.4. Despite this 

variation, the best lambda value was 1 (no transformation) irrespective of the 

spatial dependence. 

 

Figure 2. Variation of the prediction’s MSE according to sample size and 

data transformation technique. 

For relative bias variation by spatial dependence, the best lambda values 

are –2 and 1 (Figure 3). Despite the significance difference observed in 

Table 5, there was a lower variation in bias (–0.22 to –0.25) for spatial 

dependence, with moderate spatial dependence producing more accurate 

results. 
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Figure 3. Variation of MSE according to the degree of spatial dependency. 

6. Discussion and Conclusion 

Bayesian Maximum Entropy (BME) is mostly applied to continuous 

variables [34-36] and discrete variables [37, 38]. In essence, a transformation 

is applied when data is skewed [7, 23-25]. Data transformation, as part of the 

pre-processing phase, plays an important role in ensuring data quality prior 

to data analysis [39]. In this study, an empirical assessment of the effect of 

data transformation techniques derived from Box-Cox family was carried 

out. After applying Box-Cox transformation with different lambda values to 

skewed data, we noticed that not all Box-Cox transformation methods do 

correct normality, this includes lambda values such as –3, –0.5, –0.33, –0.25, 

0, 1, 2 and 3. However, lambda values such as 0.25, 0.33 and 0.5 improved 

the normality irrespective of the spatial dependency level. This finding was 

consistent with the previous works of [40] on trialeurodes vaporariorum 

populations in which data was transformed. 

Firstly, to determine if improving the normality of a dataset can improve 

the prediction accuracy of BME, our results showed that the interaction 

between skewness and transformation techniques significantly affected       

both MSE and bias (p < 0.001 for both). This implies that BME accuracy           

varies with skewness and transformation techniques. However, when data 

transformation methods were compared by the degree of skewness, the 
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untransformed data (lambda  1) gave lower MSE regardless of the degree 

of skewness. This suggests that data transformation can improve data 

normality but not BME prediction accuracy. As a result, BME can be 

considered robust to skewness, the transformation might not be necessary 

when the data is skewed. These results align with Christakos’s discussions 

on BME robustness [8, 13]. 

Secondly, we investigated if the accuracy of data transformation 

techniques applied to BME was affected by sample size. We found that the 

sample size has no significant effect on the MSE and bias of prediction    

with p-values of 0.166 and 0.179, respectively. Furthermore, on the MSE   

(p-value  0.915) and bias (p-value  0.981), the sample size showed no 

interaction with data transformation techniques. This finding suggested that 

the choice of sample size and data transformation had no effect on BME 

performance. 

Finally, we evaluated if the accuracy of data transformation techniques 

applied to BME is influenced by the spatial dependency of the dataset. Our 

findings revealed that Box-Cox transformation and spatial dependence had      

a significant impact on the MSE (p-value 0.001) but not the bias of the 

prediction (p-value  0.596). However, when we compared the performance 

of transformed data to untransformed data, we discovered that BME applied 

to untransformed variables (lambda  1) generated better results than 

transformed variables regardless of the spatial dependency. 

In conclusion, our study revealed that Box-Cox transformation can 

enhance the dataset normality, which is consistent with prior research         

[7, 23-25]. However, we found no indication that (1) enhancing normality 

improves BME prediction accuracy, (2) a given sample size improves BME 

prediction accuracy after transformation, or (3) any spatial dependence level 

is more accurate. As a result, BME can be considered robust to sample size 

and spatial dependency even when the data is skewed. 
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