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Abstract. This study compares the performance of CART, C5.0 and Random For-
est (RF) algorithms. 25 continuous predictors and 25 factors were simulated using
a population size of 10,000. Based on this data, sample data were generated by
varying the number of predictors, the proportion of categorical versus continuous
predictors and the sample size. The performance of the tree algorithms increases
with sample size and the number of variables, but for RF, it is highly greater than
the one of CART and C5.0. Irrespective of the algorithms, the performance de-
creases when there are more categorical variables than continuous variables.
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Résumé. (French Abstract) La présente étude compare les performances des
algorithmes CART, C5.0 et Random Forest (RF). 25 prédicteurs continus et 25
facteurs ont été simulés a partir d'une population de taille 10000. Sur la base
de ces données, des échantillons ont été générés en faisant varier le nombre de
prédicteurs, la proportion de prédicteurs catégoriels par rapport aux prédicteurs
continus et la taille de 'échantillon. La performance des algorithmes augmente
avec la taille de I'échantillon et le nombre de variables. Celle de RF est nettement
supérieure a celle de CART et de C5.0. Indépendamment des algorithmes, la
performance diminue lorsqu’il y a plus de variables catégorielles que de variables
continues.
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1. Introduction

There is an increasing trend in the use of supervised machine learning (SML)
to build a concise model of the distribution of class labels in terms of predic-
tor features Kotsiantis, 2007. Many supervised machine learning algorithms
have been developed including Decision Trees (DT), Neural Networks, Naive
Bayes, k-Nearest Neighbors (KNN), Support Vector Machine (SVM). During the
past decades, several algorithms such as statistical classifier, neural network
classifier, syntactic classifier and tree-based classifier Zhang et al., 2014 have
been proposed for solving real world classification and clustering problems
Farid et al., 2014, Liao et al., 2012, Ngai et al., 2009.
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Decision trees (DT) constitute ones of the most popular methods for classification
in various data mining applications and assist the process of decision-making
Han et al., 2006. Decision tree algorithms are used to establish non-linear re-
lationship between predictive factors and outcomes as well as for mixed data
types (i.e. numerical and categorical). In small and large datasets, classification
and regression trees are becoming increasingly popular for partitioning data and
identifying local structure Kotsiantis, 2007. Classification trees include those
models in which the dependent variable (the predicted variable) is categorical
while Regression trees include models in which it is continuous. It provides
a modeling technique that is easy for human to understand and simplifies
the classification process. The most common classification tree algorithms are
Classification And Regression Tree (CART) Breiman, 2017, Random Forest (RF)
Breiman, 2001 and C5.0/C4.5 Bujlow et al., 2012, Salzberg, 1994 since they
perform well in terms of execution time, classification accuracy and frequency of
use Anyanwu and Shiva, 2009, Sharma and Srivastava, 2016.

These techniques have received a great attention under various aspects during
the last decades. Indeed, Ali et al., 2012 compared Random Forest (RF) and
C4.5 using the following parameters: correctly classified instances, incorrectly
classified instances, F-Measure, Precision, Accuracy and sensitivity. Zhang, 2016
used the air quality data (continuous response) to compare RF and CART and
introduced R functions to perform model based on recursive partition. Moreover,
Miller et al., 2016 introduced a multivariate extension to a decision tree ensemble
method called Gradient Boosted Regression Trees for finding and interpreting
structure in data sets with multiple outcomes and many predictors. Recently,
some researchers compared the performance of Classification trees algorithms
with generalized linear models (GLMs) and some of their extensions. For instance,
Jeune et al., 2018 compared the Multinomial Logistic Regression (MLR) with
Random Forest (RF) in the classification of the soil types and found that the
classification performance was moderate for both algorithms Based on the Kappa
values and RF classifier outperformed MLR in the validation process.

Though there have been many works which focused on classification trees based
on either ensembles trees methods or single tree methods, few studies have
simultaneously compared the performance of CART, C5.0 and RF algorithms
under some conditions related to the sample size, the number of variables and
the proportion of variables type. Indeed, the effect of sample size on model
accuracy is an aspect that is often overlooked Wisz et al., 2008. The classification
performance is known to rapidly decrease for sample sizes smaller than 15
records Papes and Gaubert, 2007, and become dramatically poor for samples
sizes smaller than 5 records Pearson et al., 2007. Schratz et al., 2018 illustrated
how the machine learning modeling methods including RF can be affected by
an uneven distribution of the binary response variable, sample size and the
number and types of predictors (numeric as well as nominal), the influence of
spatial autocorrelation and predictors derived from various sources. Indeed,
the proportion of continuous versus categorical variables and the number of
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predictors constitute some aspects which may impact the quality of classification
results. Taking those aspects into account during the classification process may
help in the choice of the algorithm to be used considering the configurations and
properties of the available data set.

What is the performance of CART, C5.0 and RF with multiple outcomes when the
number and the proportion of type of predictors change? What is the behavior of
these three classification algorithms when the sample size increases? There are
some research questions we attempted to answer in this papers.

The paper is organized as follow: the Section 2 recalls the methodology of the study
and in Section 3 the main results. We provide our formal analysis (discussion) in
Section 4 and concluded the paper in section 5.
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2. Materials and Methods
2.1. Description of selected Algorithms
2.1.1. CART algorithm

The CART (Classification and regression trees) was introduced by Breiman, 2017.
It builds both classification and regression trees. The classification tree construc-
tion by CART is based on the binary splitting of the data attributes. This algorithm
uses the Gini index splitting measure to select the splitting attribute, and the prun-
ing is done using the cross-validation technique Khoshgoftaar and Seliya, 2004.
CART uses both numeric and categorical attributes to build the decision tree
Lewis, 2000. The classification tree subdivides the training data set space into mul-
tiple classes (leaves). Each class consists of a set of rules that splits the decision
variable spaces Yang et al., 2016. The CART Algorithm for DT can be described as
follows Lavanya and Rani, 2012:

— Tree building using recursive splitting of nodes:
1. Selection of splitting attribute: For S attributes, there will be a total of S splits
to consider. Find each attribute that takes the best split using a goodness of split

AI(S,T) = I(t) — PiI(t;) — PoI(ts) (1)

P, and P, are the probability of the instances of ¢ that go into ¢; and ¢, respec-
tively. I(¢) is the impurity defined as:

1(t) = = Y P(w;) Plw;)

i#]

=1-)Y P(w))

With P(w;) the conditional probability of class j in S
2. Decide the node to represent a terminal node or to continue splitting the
node.
- Stopping the tree-building process when the maximal tree has been produced.;
- Tree pruning: this algorithm used a cross-validation method.
1. Divide all training data into N disjoint subsets, R = R;, Ry, ...., Rx
2. Foreachj=1,....,N do
Test set = R;
Training set = R — R;
Using the Training set, Compute the decision tree.
Decide the performance accuracy X; with the use of the test set.
— Optimal tree selection: Choose the tree which does not overfit the information
but fits this information well in the learning dataset.

(2)

2.1.2. C5.0 algorithm

The C5.0 algorithm is a new generation of Machine Learning (ML) algorithms based
on decision trees. It follows the rules of the C4.5 algorithm, which follows the rules
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of the ID3 algorithm. The C5.0 classifier was developed as an improved version
of a well-known and widely used C4.5 classifier. It has several important advan-
tages, including acknowledging noise and missing data and the error pruning is
solved by the C5.0 algorithm Pandya and Pandya, 2015. This algorithm can offer
a powerful boosting method to increase the accuracy of the classification process.
The building of a classification tree using the C5.0 algorithm can be described as
follows Pandya and Pandya, 2015:

- Create a root node,
- Check the base case,
- Construct a decision tree using training data,
-~ Apply cross-validation technique:
1. Divide all training data into N disjoint subsets, R = R;, Rs, ...., Rn
2. Foreach j=1,...,N do
Test set = R;
Training set = R — R;
Using the Training set, Compute the decision tree.
Decide the performance accuracy X; with the use of the test set.
3. Reckon the N-fold cross-validation technique to estimate the performance
- Apply Reduced Error Pruning technique: 1. Find the attribute with the highest
info gain 2. Classification: for each t; € D, apply the DT to determine its class.

2.1.3. Random Forest algorithm

Random Forest (RF) was developed by Breiman, 2001. It is a group of un-pruned
classification or regression trees made from the random selection of training data
samples. In RF, every decision tree is made by randomly selecting data from avail-
able data. For example, a Random Forest for each decision tree can be built by
randomly sampling a feature subset and/or by randomly sampling a training data
subset for each decision tree. Each tree is grown as described by Ali et al., 2012:

— Sampling N randomly if the number of cases in the training set is N with re-
placement from the original data.

— For M number of input variables, the number of variables m is selected (m << M
is specified at each node), m variables are chosen randomly from the M, and
the best split on these m variables is used for splitting the node. During the
forest growing, the value of m is held constant.

— Each tree is grown to the largest possible extent, and no pruning is used.

2.2. Simulation design

Let’s consider a categorical response variable Y with classes m = 1,...,M and
X (n,p) of predictors. To simulate the dataset, fifty predictors were generated with
twenty-five continuous and twenty-five categorical predictors. This setting was
considered due to the levels of the proportion of categorical versus continuous
variables in the design. Fifteen continuous predictors were independently gen-
erated with multivariate normal distribution with mean vector O and identity
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covariance matrix Miller et al., 2016, while the other ten continuous variables
were generated with uniform distribution Ye and Lord, 2014. The population size
was assumed to be very large (N = 10,000). Twenty-four binary predictors were
generated with Bernoulli distribution where the probability of each case equals
0.5 Steingrimsson and Yang, 2018, and one factor with three levels was also
considered.

A multinomial logistic model was used to generate the categorical dependent vari-
able Y (with three classes) based on the matrix of independent variables (X)
generated in the previous step El-Habil, 2012. This model is one of the most
commonly used models for analyzing categorical data with more than two levels
El-Habil, 2012. For a multinomial model, any class of the response variable can
be taken as the reference category El-Habil, 2012. As such, we considered cate-
gory one as the reference level. To find the relationship between the probability of
each class and explanatory variables, we defined the multinomial logistic model in
which the log-odds of each individual have a linear link with the predictors given
by Biau et al., 2008, El-Habil, 2012:

Tm(X),
7TI(X))—ozm+Xﬂm 3)

:Zm

~—

log(

where X is the matrix of predictors, 7, is the probability of occurrence of class m
and S, the predictors’ weights for individuals in class m. The probabilities of each
class are calculated as follows: for m =2,.... M andi=1,..., N,

exp(Zmi)

Tm(X) = plyi = m|X) = (4)
1+ S0, exp(Zns)
and for the reference category (m = 1),
1
™ (X) = plys = 11X) = (5)

14+ 3250, exp(Zn)

with Z%zl mm(X) = 1, since the denominator acts as a normalizing constant.

The three-level categorical predictor implied two dummy variables in the design
matrix El-Habil, 2012. Since all predictors X cannot contribute to generating the
true response variable Y, the design matrix was constructed with the two dummy
variables from the 3-levels factor and forty-six predictors; three variables (one bi-
nary and two numeric variables) were excluded. The vectors 3, and 33 representing
the predictors’ weights for classes 2 and 3, respectively, are generated from a stan-
dard normal distribution Benoit, 2012. The intercepts as and a3 were set to 2.5
and 0.2 for classes 2 and 3, respectively, while «; = 0 (for the reference category).
The individual outcomes Y; were randomly and independently sampled from the
population where Y; has a multinomial distribution with probability defined for
each category Williams, 2016. This resulted in the following proportions for the
three classes: 21.43 %, 41.12 % and 37.45 % for classes 1, 2 and 3, respectively.
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2.3. Sampling schemes

Factors considered were the number of predictors, the proportion of categorical
versus continuous variables within the predictors and the sample size. Three
ratios (0.25, 0.5, 0.75) of categorical versus continuous variables with a varying
number of predictors (4, 8, 12, 16, 20, 24, 28 and 32) were considered. For
example, when the proportion of predictors’ type is 0.25, it means that 25 % of
the variables are categorical versus 75 % which are continuous in the resulting
subset. In contrast, when the ratio is 0.75, it means that 75 % of variables are
categorical versus 25% which are continuous variables. To obtain the observed
data, a random sample of varying sizes (50, 100, 200, 500, 800 and 1000) taken
from each subset was considered. The combination of the levels of the different
factors resulted in 144 settings of datasets.

Each setting of the dataset was repeated 200 times Kuhn, 2008, and each dataset
was split into training (80 % of data) and test (20 %) sets. The three algorithms
(CART, C5.0 and RF) were used for building different models of classification using
respectively rpart Therneau and Atkinson, 2018, C5.0 Kuhn and Quinlan, 2015
and Random Forest Liaw and Wiener, 2002 R packages. For the RF models, the
total number of trees to grow was kept to the default value (i.e. ntree = 500). The
combination of different settings and replicates resulted in 86,400 models. Fig. 1
summarizes the general workflow of data simulation and processing.

To evaluate the performance of the algorithms, metrics such as accuracy, sensi-
tivity, specificity, and kappa statistics were computed during the classification us-
ing the R package caret Kuhn and Quinlan, 2015. The datasets of evaluation met-
rics were analyzed in the statistical software R version 3.5.2 R Core Team, 2018.
Means and standard errors of the performance metrics were calculated and used
to evaluate the performance of the three algorithms by observing their varia-
tions with respect to the different factor levels. Pairwise multiple comparisons
and the Bonferroni method for adjusting p-values from the Agricolae R package
de Mendiburu, 2019 were used to classify the mean values of the performance
metrics among the algorithms. The formulas to compute different evaluation met-
rics are defined as follows:
— The Accuracy is the percentage of predictions that are correct and given by:
TP+ TN
Accuracy = TPITN fFPT FN (6)

— The Sensitivity is the percentage of positive instances that are predicted as pos-
itive and given by:

TP

— The Specificity is the percentage of negative instances that are predicted as
negative and expressed by:

TN
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- The Kappa statistic is the measure of agreement relative to what would be ex-
pected by chance and expressed by:

P, P,
K =2 c 9
appa = T—p 9)
where
P, = TP+ TN (10)
TP+TN+ FP+ FN
and
P, :Pyes + Pro (1 1)
with
(TP+ FP)(TP+ FN)
Pyes = (12)
(TP+TN + FP+ FN)?
and
p (TN 4+ FP)(TN + FN) (13)
" (TP+TN+ FP + FN)?2

Where P, and P. are the relative observed agreement (or the accuracy) and the
hypothetical probability of chance agreement, respectively. In all these formulas,
TP, TN, FP and FN denote the true positives, true negatives, false positives and
false negatives, respectively.

2.4. Application with cattle breeding dataset

In this case study, the dataset was collected on feeding strategy and food resources
management in Cattle breeding of Nikki, Kalalé and N'Dali districts in northern
Benin, with 329 subjects and 48 variables. Three algorithms (RF, C5.0 and CART)
were applied to this data. Random Forest was used to predict the subjects’ classes.
However, to obtain the response variable (i.e. the vector of subjects classes), Fac-
torial Analysis on Mixed Data (FAMD) was used, and 25 principal components
(PCs) explaining 75 % of the total information in the initial matrix were chosen.
Hierarchical Clustering on Principal Components (HCPC) was applied to FAMD
results (i.e. the 25 PCs). Then, three classes were obtained, and 34 predictors (23
categorical and 11 continuous variables, i.e. 67,6 % of categorical vs continuous)
contributed to building the subjects’ classes (i.e. the different clusters).

The distribution of the three class subjects was taken as the response variable.
According to Breiman, 2017, a single train and test partitions are not reliable es-
timators of the true error rate of a classification scheme on a limited dataset. So,
five-fold cross-validation was applied to the dataset to obtain its partition into five
training/test sets. The cross-validation sampling technique splits the dataset into
five folds: one fold serves as a test set and the other parts as training sets. The
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Number of variables: Proportion of variables
8 levels (4, 8, 12, 16, 20, type: 3 levels (25%,
24, 28, 32) 50%, 75%)
v
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N =10,000
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6 levels (50, 100, 200,
500, 800 and 1000)
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l ,,

[ Predictions
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l Accuracy
Evaluation :enm‘t]fliv;:y
metrics pectlicity

Kappa statistic

Fig. 1. General workflow of the simulation design.

process was repeated five times such that each fold was used as a test set. This
ensures that the approximate proportion of each class remains 80 % in the train-
ing set and 20 % in the test set Jeune et al., 2018. The metrics such as accuracy,
sensitivity, specificity, and kappa statistics were computed and averaged over the
5-fold estimates.
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Fig. 2. : Performance of three algorithms related to the number of variables.

(A) accuracy values averaged across the sample size, the proportion of variables
type and replicates, (B) sensitivity values averaged across the sample sizes, the pro-
portion of variables type and replicates, (C) specificity values averaged across the
sample sizes, the proportion of variables type and replicates and (D) kappa values
averaged across the sample sizes, the proportion of variables type and replicates.
Error bars represent the standard error of each mean. Orange, green, and blue
lines represent RF, CART and C5.0 algorithms, respectively.

3. Results
3.1. Performance of algorithms in terms of the number of predictors

The mean accuracy ranges between 40 % (for four predictors) and 57 % (for 32
predictors) (figure 2A). The mean accuracy increases with the number of predictors
for the three algorithms. However, RF estimates were higher than those of CART
and C5.0 (figure 2A), with C5.0 having the lowest values. The standard error of
the mean was very low (0.005 is the maximum value) for all three models. The
sensitivity estimates ranged from 79 % to 81 % (Picture B in Fig. 2). The sensitivity
values were statistically the same for all three algorithms (Picture B in Fig. 2). The
specificity (false negative rate) for RF increases almost linearly with the number
of variables. In contrast, it grew very slowly for CART and C5.0 and stabilized
when the number of variables reached 32 (figure 2C). The mean kappa statistic
ranged from 6 % to 30 % and increased with the number of predictors for all three
algorithms (figure 2D). RF estimates grow more rapidly than for CART and C5.0.
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Fig. 3. : Performance of three algorithms in relationship with sample size.

(A) accuracy values averaged across the number of variables, the proportion of
variables type and replicates, (B) sensitivity values averaged across the number of
variables, the proportion of variables type and replicates, (C) specificity values aver-
aged across the number of variables, the proportion of variables type and replicates
and (D) kappa values averaged across the number of variables, the proportion of
variables type and replicates. Error bars represent standard errors of means. Or-
ange, green, and blue lines represent RF, CART and C5.0 algorithms

3.2. Performance of algorithms in terms of sample size

The mean accuracy ranges from 45 % (for n = 50) to 55 % (for n = 1000) (Picture
A in Fig. 3), whereas the mean specificity varies between 25 % and 46 % (Picture
C in Fig. 3), and the mean kappa statistic varies between 6 % and 25 % (Picture
D in Fig. 3). Moreover, the mean values of accuracy, specificity and kappa statistic
increased rapidly, with the sample size for the RF and CART algorithms. However,
C5.0 estimates for the specificity were almost constant with increasing sample size
(Picture C in Fig. 3). RF estimates were higher than the ones of CART and C5.0
for accuracy, kappa statistic and specificity, while these parameter estimates were
low in the C5.0 model. The SE estimates were very low (0.0005 -0.0055) for the
three algorithms. The sensitivity estimates ranged from 79 % to 81 % (Picture B in
Fig. 3). We observed that, on average, sensitivity values were the same according
to the three algorithms. Accordingly, there was no significant difference between
the algorithms Bulleted lists look like this:
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3.3. Performance of algorithms in terms of proportion of categorical versus
continuous variables

The mean accuracy estimates were between 42 % and 55 % (Picture A in Fig. 4),
whereas the mean specificity ranged from 27 % to 46 % (Picture C in Fig. 4). For
kappa statistics, estimates were between 9 % and 25 % (Picture D in Fig. 4). When
the number of categorical variables was lower than that of continuous variables
(i.e., the proportion of 0.25), the accuracy and kappa statistic values were high
for all three algorithms. In contrast, when the number of categorical variables is
greater than the number of continuous variables (i.e. the proportion of 0.75), the
accuracy and kappa statistic values become lower for the three algorithms. How-
ever, for the specificity, RF estimates were higher than those of CART and C5.0,
which were relatively invariant across the proportion of the predictor’s type. Re-
garding the sensitivity, all the estimates were the same for the three algorithms
regardless of the predictor’s type. They ranged between 79 % and 81 %. The values
of the performance parameters were the same for all algorithms irrespective of the
proportion of the predictor’s type specified (Picture B in Fig. 4). For all algorithms,
the standard errors were also very low (0.0008-0.003) for all parameters.

3.4. Application results

The Hierarchical Clustering on Principal Components (HCPC) applied to the FAMD
results showed that the cattle breeders can be subdivided into three classes.
Some variables were not important during the clustering step and have been
removed. The breeders of the first class were all from Kalalé (9.12 %) district.
They feed their cattle with shrubs chosen according to whether they have good
regrowth and can be found everywhere. When the shrubs also have good biomass
and good growth, they choose them to feed their cattle. They also practice fallow
to graze their animals and food crops like millet, yam, corn, soy and beans. The
breeders of the second class were those from Kalalé (23.71%) and N'Dali (32.83
%) districts. These breeders feed their animals with shrubs chosen according
to whether they have good growth, resist better to the dry season, and can be
found everywhere. They practice food crops such as maize, yams, cassava, beans,
and groundnuts. The breeders of the third class were all from Nikki (24.62 %),
who feed their cattle with shrubs chosen according to whether they have good
regrowth and can be found everywhere. These shrubs must also have good
biomass and good growth. The breeders also practice fallow to graze their animals
and food-producing crops such as maize, yams, soy, beans, cassava, cotton and
groundnuts. The important variables with a high mean accuracy value (15 % and
25 %) in the model fitted to the cattle dataset were district, growth criteria, culti-
vated areas for cotton and yam, and waste sale. Also, the results showed that the
breeders of classes 2 and 3 were predicted with low error rate than those of class 1.

Applying the three algorithms to the data showed that RF outperformed CART
and C5.0 for all performance criteria except sensitivity. The results showed that
the value of mean accuracy is 0.9635 + 0.0038, 0.9333 + 0.0071, and 0.9182 +
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Fig. 4. Performance of three algorithms in relationship with the proportion of pre-
dictor’s types.

(A) accuracy values averaged across the number of variables, sample sizes and
replicates, (B) sensitivity values averaged across the number of variables, sample
sizes and replicates, (C) specificity values averaged across the number of variables,
sample sizes and replicates and (D) kappa values averaged across the number of
variable sample sizes and replicates. The error bar represents the standard error
of each mean. Orange, green, and blue lines represent RF, CART and C5.0 algo-
rithms.

0.0161 for Random Forest, CART and C5.0, respectively. So, by using RF, 96.34 %
of predictions are correct. However, 99 + 0.6 % (sensitivity) of cattle breeders are
classified correctly within classes 2 and 3, and 100 + 0 % (specificity) are classified
in class 1. The value 0.951 *+ 0.02 of the kappa statistic indicates a perfect agree-
ment between the predicted classes and the observations in the test dataset. The
standard errors were very low, indicating a good precision of estimates.

4. Discussion
4.1. Merits and limitations

We used simulations to evaluate the relative performance of classification algo-
rithms such as CART, C5.0 and Random Forest. The different simulation settings
we proposed allowed us to mimic some case studies that can happen in real-
world situations. Also, the simulations allowed us to choose the different values

Journal home page: http:/ /www.jafristatap.net, www.projecteuclid.org/euclid.ajas



B.R. Orounla, A.L. Sode, K.V. Salako and R. Gléle Kakai, African Journal of Applied
Statistics, Vol. 10 (1), 2023, 1399 - 1418. Empirical Performance of CART, C5.0 and
Random Forest Classification Algorithms for Decision Trees 1413

of intercepts for the desired proportion of different classes of the response variable.

Standard normal and uniform distributions were assumed to generate continuous
predictors. These are some scenarios that we could have in practice. However, in
a real-world situation, the predictors can also have other distributions such as
chi-square, Poisson, negative binomial, or log-normal distribution, which we did
not consider in this study. Furthermore, apart from the linear effect of predictors
on the response variable, quadratic or interaction effects on the response are also
plausible. Still, these cases were not considered in this study since the number
of parameters of the simulated model will become high, and the interpretation
could be complicated Miller et al., 2016. Models such as classification or regression
trees might be resistant to highly correlated predictors, but multicollinearity may
negatively affect the interpretability of the model Kuhn, 2008. The predictors that
are more correlated can be identified and removed.

4.2. Performance of algorithms

The classification results from CART, C5.0 and RF algorithms revealed how well
the algorithms perform according to the sample size, the number of variables
and the proportion of the predictor’s type. The performance of the algorithm is
improved when the number of variables and sample size increase. However, RF
performs better than the other algorithms in general. This better performance
of RF may be due to its predictive efficiency Ali et al., 2012, its ability to make
feature selections and its non-parametric property for various types of datasets
Qi, 2012. Accurate predictions and better generalizations are achieved using
ensemble strategies and a random sampling Qi, 2012. This generalization prop-
erty is due to the bagging scheme, which improves the method by decreasing
the variance, while similar techniques like boosting achieve this by reducing
the bias Breiman, 1996, Lavanya and Rani, 2012. The feature selection used by
RF provides accurate predictions on many applications and can measure the
importance of each feature with model training. Unlike classical decision trees,
there is no need to prune trees in RF since the ensemble and bootstrapping
schemes allow RF to overcome overfitting issues Qi, 2012. RF performs fea-
ture selection while classification rules are built, increasing its use for variable
selection (e.g., selecting a subset of genetic markers relevant for predicting a
certain disease) Lavanya and Rani, 2012, Qi, 2012. An empirical comparison
conducted by Caruana and Niculescu-Mizil, 2006 also showed that the Ran-
dom Forest algorithm achieved excellent performances compared to numerous
other supervised learning algorithms. Also, RF generally exhibits a significant
performance improvement compared to single tree classifiers such as C4.5
Ali et al., 2012, Dahinden, 2011. From the simulation results, the slight variation
(approximately 1 % - 2 %) of the sensitivity for the three algorithms means that the
subjects within classes 2 and 3 were correctly classified by the three models, re-
gardless of the number of predictors and the sample size of the data. However, the
best performance of RF in terms of specificity means that the first class of subjects
was correctly predicted. Regarding the kappa statistic, there is a good association
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between the observed and forecast data for the three algorithms. Likewise, in terms
of sample size, a dataset with 500 subjects allows RF to perform more or less opti-
mally. However, CART’s performance over C5.0 may be linked to its computational
efficiency Field Lewis, 2000; in other words, it could be due to the Gini index used
for selecting the best predictor attribute and the measure of the impurity of a node.

From the case study, Random Forest was the best method and classified almost
all the breeders in their different classes well. This method has shown to be
a powerful statistical classifier in many other fields, such as computational
ecology; computational drug screening, where panels of cell lines are used to
test drug candidates for their ability to inhibit proliferation Riddick et al., 2011.
Cutler et al., 2007 compared the accuracies of RF with those of four other
commonly-used statistical classifiers on three different ecological datasets. RF
showed high classification accuracy in all three applications. The comparison
of the performance of the Multinomial Logistic Regression (MLR) with Random
Forest (RF) in the classification of the soil types showed that the RF classifier
outperformed MLR in the validation process (Kappa values were 0.33 and 0.55,
respectively) Jeune et al., 2018. These values of the Kappa statistic were very
low compared to the one obtained from our case study, which was 0.951. The
fluctuating trend of the error rate of the out-of-bag (OOB) or feature permutation
importance Qi, 2012 given by RF revealed that the estimation of accuracy loss
varies when the number of trees increases. Despite the high performance of
Random Forest, it presents some limitations, such as the large computation time
and the interpretability issue, especially in the case of multiple outcome variables
Miller et al., 2016. In general, decision tree ensembles exchange interpretability
for the prediction performance Miller et al., 2016. The computation time is also
important for evaluating different classification models Zhang et al., 2016. A slow
statistical procedure can be a great challenge in the case of big data.

One of the main aims of modeling is to estimate some metrics without bias or with
minimal error. Thus, the low standard error observed for the mean estimates of
evaluation metrics means that the predictive performance of the different algo-
rithms is stable, probably because of the properties of the machine learning meth-
ods in general. Model estimates with high prediction could lead to good conclusions
and effective and reliable decision-making afterwards.

4.3. Practical implications and suggestions for further research

In most cases, the results from the ensemble tree model (RF) were better than those
from the individual tree models (CART and C5.0) Dahinden, 2011 in terms of ac-
curacy, specificity and kappa statistic. Further accuracy improvement involves a
good model that performs well in predictions. A classification model with 100 %
sensitivity means that all the trees with the disease are correctly identified. High
sensitivity is crucial when the study identifies a severe but treatable disease (e.g.,
an attack on plants). However, Kappa is an excellent performance measure when
the classes are highly unbalanced Kuhn, 2008. The importance of the cost associ-
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ated with an incorrect classification could vary according to the field of application
of the classification tree method and the evaluation metric applied in the study
Hassouna et al., 2016. Extending this study to the comparison of RF, Gradient
Boosted Regression Tree, CART combined with shuffled cross-validation scheme
Yang et al., 2016 and possibly the Bayesian classification, i.e. Naive Bayes algo-
rithm Farid et al., 2014, according to the same metrics and features studied here
could be considered for further evaluation. The effect of interactions and collinear-
ities between predictors, as well as the variation of tree complexity and learning
rate, on the predictive performance of these algorithms are additional issues not
covered in this study, but that should be further investigated.

5. Conclusion

We assessed the performance of two single tree and one ensemble tree methods
according to the number of predictors, the sample size and the proportion of
categorical vs continuous variables. The performance of the three algorithms
was improved when the number of variables and sample size increased, but RF
showed an excellent performance compared to CART, which was, in turn, better
than C5.0. When the number of continuous variables in a dataset is much larger
than the categorical variables, we can expect a good performance of algorithms
in terms of accuracy and agreement between the observed and predicted classes
for all algorithms. For the three algorithms, the estimates’ precision was very
good, which may be due to the properties of machine learning methods in general.
Applying the three algorithms showed that RF remains the best classification
method for decision trees. The result of RF on the real dataset showing three cate-
gories of cattle breeders revealed that RF classified well the different categories of
cattle breeders identified in Northern Benin. We suggest using the RF method for
classification problems to gain significant performance and accurate predictions.
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