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École Mathématiques Africaine

UAC, Cotonou, Republic of Benin

January 22 –29, 2018

1



ORGANIZATION OF THE COURSE

1. Introduction

2. Chapter 1 : Censoring and truncation

3. Chapter 2 : Nonparametric methods

4. Chapter 3 : Parametric methods

5. Chapter 4 : Regression methods

2



1 INTRODUCTION

Survival analysis is the modern name given to the collection of statistical
procedures which accommodate time-to-event censored data.

Aim of survival analysis : model and analyse time-to-event data, i.e., data
that has as a principal endpoint the time when an event occurs.

A survival time is the time to occurrence of some event of interest. It is
called a lifetime or failure time when it is the duration from the origin of times
to the moment of death of a patient or failure of an electronic component in
an industrial life-testing experiment.

Survival times arise especially in medical follow-up as well as in industrial
reliability.
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Models of survival data has become a particular field of statistical methods
because of the following reasons :

◮ The data observed is rarely ”complete” in the sense that it may be sub-
ject to observations that complicate seriously the description of the phe-
nomenon. This kind of observations are called censoring or truncation
variables.

◮ The usual parametric distributions are rarely adapted to the observed times
of the phenomenon (they are often centred or have positive skewness
whereas the life times have negative skewness). That is why, parametric
and semi-parametric methods are generally used to estimate the lifetime
distributions.
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There are globally two ways which aim to resolve the same problems in
survival analysis but use different approaches:

- Approach with original formulations of the models using the methods of
the traditional statistical inference,

- Approach with punctual processes using the powerful results of martingales
theory.

The objective of this course is to provide an introduction to the field of
survival analysis in a coherent manner which captures the spirit of the methods
of statistical modelling and analysis of lifetimes without getting too embroiled
in the theoretical technicalities.
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1.1 Basic concepts and tools

Let T denote the lifetime. T is a continuous random variable defined on a
probability space (Ω,A,P), with probability density function f and distribu-

tion function F (t) =
∫ t

0 f(x)dx.
In survival analysis the distribution of T is usually characterized by the follow-
ing other functions
- the survivor function : S(t) = P[T > t] = 1− F (t),

- the hazard function : λ(t) =
f(t)

S(t)
=

f(t)

1− F (t)
,

- the cumulative hazard function : Λ(t) =
∫ t

0 λ(s)ds.
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The function S(t) is also referred to as the reliability function. The hazard
function λ(t) specifies the instantaneous rate of failure at T = t given that
the individual survived up to time t, that is

λ(t) =
f(t)

1− F (t)
= lim

∆t↓0
1

∆t
P (t 6 T < t +∆t|T > t). (1)

The p-th quantile of the distribution of T is the value tp of T such that
F (tp) = P[T 6 tp] = p. It is also referred to as the 100× p-th percentile of
the distribution.

The mean residual life at a time t :

mrl(t) = E[T − t|T > t] =

∫ +∞
t S(x)dx

S(t)
.

For individuals of age t, it measures their expected remaining lifetime.
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The quantity λ(t)∆t is approximatively the probability of a death in the
interval [t, t+∆t), given survival up to time t. λ(t) is also referred to as the
risk or mortality rate viewed as a measure of intensity or a measure of the
potential of failure at time t.

NB: The hazard is a rate, rather than a probability. It is a probability per
unit time and depends on whether time is measured in days, weeks, months
or years, etc. It can assume values in [0,+∞).

For example, if P[t 6 T 6 t +∆t|T > t] = 1
4, then we have

∆t =
1

3
day, ⇒ λ = 0.75 per day

∆t =
1

21
week, ⇒ λ = 5.25 per week
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It is easy to check the following fondamental relations

Λ(t) =

∫ t

0

λ(u)du = − logS(t), (2)

S(t) = exp(−Λ(t)) = exp(−
∫ t

0

λ(u)du) (3)

f(t) = λ(t)S(t) = λ(t) exp(−Λ(t)). (4)

Note that the hazard function is usually more informative about the underly-
ing mechanism of failure than the survivor function. For this reason, modeling
the hazard function is an important method for summarizing survival data.
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1.2 Censoring and truncation models

A distinctive feature of survival data is that some observations may be cen-
sored. That is, often the event of interest (e.g. death of patient, failure of
component, recovery of patient) has not occurred by the time of recording so
that, the lifetime of that subject is at least some value which is referred to
as censoring time. Such censoring observations cannot be ignored since they
carry important information about the effectiveness of the treatment. The
necessity of obtaining methods of analysis that accommodate censoring is the
primary reason for developing specialized models and procedures for failure
time data.

We present here three types of censoring models and two truncation mod-
els. T1, T2, · · · , Tn will denote independent and identically distributed random
variables, representing the lifetimes of n individuals under a study.
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1.2.1 Type I censoring

Put items considered on test at t=0 and record their times to failure. Some
items may take a long time to ”fail” and one will not want to wait that long
time to terminate the experiment. Therefore, one terminates experiment
at a pre-specified time tc. Hence the number of observed failure times is
random. Instead of observing the Tis, one observes Y1, Y2, · · · , Yn where

Yi = min(Ti, tc) =

{
Ti if Ti 6 tc
tc Ti > tc.

tc is called the fixed censoring time. Let δ be the censoring variable which
indicates if a failure time is observed or censored,

δ = 1I{T6tc} =

{
1 if T 6 tc
0 otherwise.

One then observes the i.i.d. random pairs (Yi, δi).
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1.2.2 Type II censoring

In this type, the experiment is run until a pre-specified fraction r
n of the n

items has failed. Then by plan, observations terminate after the r-th
failure occurs. So only one observes the r smallest observations in the sam-
ple. Hence one has n− r censored observations.

Remarks 1.1 Note that

1. In Type I censoring, the end point tc is a fixed value and the number
of observed failure times is a r.v. which assumes a value in the set
{0, 1, 2, · · · , n}.

2. In Type II censoring, the number of failures times r is a fixed value whereas
the endpoint Tr is a random observation. Hence one could wait possibly
a very long time to observe the r failures or, vice versa, see all r relatively
early on.
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1.2.3 Type III or Random censoring

We present only Right censoring. Left censoring is analogous. Random cen-
soring occurs frequently in medical studies. In clinical trials, patients typically
enter a study at different times. Then each is treated with one of several
possible therapies. We want to observe their ”failure” time but censoring can
occur in one of the following ways:
1. Loss to Follow-up. Patients moves away. We never see him again. We only

know he has survived from entry date until he left. So his survival time is
greater than the observed value.

2. Drop out. Bad side effects forces termination of treatment. Or patient
refuses to continue treatment for whatever reasons.

3. Termination of study . Patient is still alive at end of study.
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There are other types of censored data such as Left-censored, Interval cen-
sored, doubly-censored or truncation data.

In Left-censored case, event had already occurred before the study started.
Subject cannot be included in study.

In Interval censoring case, each event time Ti is only known to fall in an
interval (Li, Ri] where Li and Ri denote respectively the left and right end-
points of the censoring interval.

Doubly censored data are observations which are randomly left and right
censored.

Truncation is a procedure where a condition other than the main event of
interest is used to screen individuals, that is, only if the individual has the
truncation condition prior to the event of interest will s/he be observed by the
investigator.
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1.3 Examples

The following examples illustrate studies where different types of censored
observations could occur.

15



Exemple 1.1 (AML study)

The data in Table 1 are preliminary results from a clinical trial to evaluate
the efficacy of maintenance chemotherapy for acute myelogenous leukemia
(AML). The study was conducted by Embury et al. (1977) at Stanford Uni-
versity. After reaching a status of remission through treatment by chemother-
apy, the patients who entered the study were assigned randomly to two
groups. The first group received maintenance chemotherapy; the second, or
control group, did not. The objective of the trial was to see if maintenance
chemotherapy prolonged the time until relapse.

Table 1: Data for the AML maintenance study. A+ indicates a censored value.

Group Length of complete remission (in weeks)
Maintained 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48,161+

Non-maintained 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45

This example illustrate a right random censored data.
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Exemple 1.2

A child psychiatrist visits a togolese village to study the age at which
children first learn to perform a particular task. Let T denote the age a child
learns to perform a specified task. The time values which can be recorded
are, T : exact age is observed (uncensored), T−: age is left-censored as the
child already knew the task when s/he was initially tested in the study and
T+: age is right-censored since the child did not learn the task during the
study period.

This example and the next illustrate a left and right censored data model.
And when all these can occur, this is also referred to as a model of doubly
censored data.
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Exemple 1.3

Extracted from Klein and Moeschberger (1997). High school boys are in-
terviewed to determine the distribution of the age of boys when they first
used marijuana. The question stated was ”When did you first use marijuana
?”. The three possible answers and respective recorded values are given as
follow:

a. I used it but cannot recall just when the first time was. (Recorded value:
T−: age at interview as exact age was earlier but unknown).

b. I first used it when I was x old. (Recorded value: T : exact age since it is
known (uncensored)).

c. I never used it. (Recorded value: T+: age at interview since exact age
occurs sometime in the future).
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Exemple 1.4

Age in months when members of a retirement community died or left the
center (right-censored) and age when the members entered the community
(the truncation event) are recorded. Individuals must survive to a sufficient
age to enter the retirement community. Individuals who die at an early age
are excluded from the study. Hence, the life lengths in this data set are
left-truncated .

Exemple 1.5

Measurement of interest is the waiting time in years from HIV infection
to development of AIDS. In the sampling scheme, only individuals who have
developed AIDS prior to the end of the study are included in the study.
Infected individuals who have yet to develop AIDS are excluded from the
sample; hence, unknown to the investigator. This is a case of right trunca-
tion .
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•The three basic goals of survival analysis :

Goal 1 Estimate and interpret survivor and/or hazard functions from survival
data.

Goal 2 Compare survivor and/or hazard functions.

Goal 3 Assess the relationship of explanatory variables to survival time, espe-
cially through the use of formal mathematical modeling.
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2 NONPARAMETRIC METHODS

Nonparametric methods are procedures of inference that are valid simulta-
neously for many different types of underlying distributions of the life-time T .
The inference will concern the survivor function S(t) = P[T > t] and, hence,
functions of it.

2.1 Complete Failure Times

Let n be the number of individuals in the sample. Assume that there is no
censored observation. Then the set of the complete data t1, t2, · · · , tn reflects
the structure of population failure times and S(t) can be estimated by

Sn(t) =
# {ti > t}

n
=

1

n

n∑

i=1

1I{ti>t}

called the empirical survival distribution function.
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• Confidence interval for S(t) :

Sn(t) is the proportion of individuals still alive after time t and hence nSn(t)
is a binomial random variable with parameters n and p = S(t). It follows that,

E(Sn(t)) = S(t) and var(Sn(t)) =
S(t)(1− S(t))

n
.

By the central limit theorem (CLT), Sn(t) N (S(t),
√

S(t)(1−S(t))
n ) for n

large. Hence a 95% confidence interval for S(t) is given by

[
Sn(t)− 1.96

√
Sn(t)(1− Sn(t))

n
, Sn(t) + 1.96

√
Sn(t)(1− Sn(t))

n

]
.
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2.2 Right Censored Failure Times

We consider only random censoring. When there are right-censored obser-
vations, we use the product-limit (PL) estimator to estimate S(t). This is
commonly called the Kaplan-Meier (KM) estimator.
For each of the n individuals, instead of Ti, one observes the pair (Yi, δi)

where

Yi = min(Ti, Ci) and δi = 1I{Ti6Ci} =

{
1, if Ti 6 Ci

0, if Ti > Ci

Let y(i) denotes the i-th distinct ordered censored or uncensored observation
and be the right endpoint of the interval Ii = (y(i−1), y(i)], i = 1, 2 · · · , n′ 6 n
with y(0) = 0.
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In what follows

• death is the generic word for the event of interest.

• A cohort is a group of people who are followed throughout the course of the
study.

• The people at risk at the beginning of the interval Ii are those people who
survived (not dead, lost, or withdrawn) the previous interval Ii−1.

R(t) denotes the risk set just before time t and let

ni = Number of individuals in R(y(i)) = Number of alive (and not censored)
just before y(i).

di = Number of died at time y(i).

pi = P (surviving trhough Ii | alive at beginning of Ii)
= P[T > y(i) |T > y(i−1)].

qi = 1− pi = P (die in Ii | alive at beginning of Ii).
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Recall the multiplication rule for joint events A1 and A2 :

P(A1 ∩ A2) = P(A2|A1)P(A1).

From repeated application of this product rule, the survivor function can be
expressed as

S(t) = P[T > t] =
∏

y(i)6t

pi.

The estimates of pi and qi are

q̂i =
di
ni

and p̂i = 1− q̂i = 1− di
ni

=
ni − di
ni

.

The KM estimator Ŝ(t) of the survivor function S(t) is then

Ŝ(t) =
∏

y(i)6t

p̂i =
∏

y(i)6t

(
ni − di
ni

) =

k∏

i=1

(
ni − di
ni

), (5)

for y(k) 6 t < y(k+1).
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Remarks 2.1 If there is no tie then

a) di = 1 if δ(i) = 1 and di = 0 if δ(i) = 0. Hence

p̂i =

{
1− 1

ni
, if δ(i) = 1 i.e. the event is a death at time t(i)

1, if δ(i) = 0 i.e. the event is a censoring at time t(i) .

b) ni = n− i + 1 and formula (5) becomes

Ŝ(t) =
∏

y(i)6t

(
1− 1

n− i + 1

)δ(i)

=
∏

y(i)6t

(
n− i

n− i + 1

)δ(i)

. (6)

c) Ŝ(t(i)) = p̂i × Ŝ(t(i−1)).

d) These estimates are subject to sampling error. Greenwood showed that
for y(k) 6 t < y(k+1) one has approximately

var(Ŝ(t)) = (Ŝ(t))2
∑

i/y(i)6t

di
ni(ni − di)

= (Ŝ(t))2
k∑

i=1

di
ni(ni − di)

, (7)
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Exemple 2.1 Let’s consider AML1 the maintained group of AML example
(Example 1.1) where a ”+” denotes a right-censored observed value.
Maintained : 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+
We have

Table 2: KM Survival probabilities for AML1 data.

i Times Intervals Deaths di At-risk ni =
n− i+ 1

q̂i p̂i Ŝ(t(i)) F̂ (t(i))

1 9 (0, 9] 1 11 1/11 10/11 0.91 0.09
2 13 (9, 13] 1 10 1/10 9/10 0.82 0.18
3 13+ (13, 13+] 0 9 0/9 1 0.82 0.18
4 18 (13+, 18] 1 8 1/8 7/8 0.72 0.28
5 23 (18, 23] 1 7 1/7 6/7 0.61 0.38
6 28+ (23, 28+] 0 6 0 1 0.61 0.38
7 31 (28+, 31] 1 5 1/5 4/5 0.49 0.51
8 34 (31, 34] 1 4 1/4 3/4 0.37 0.63
9 45+ (34, 45+] 0 3 1/3 1 0.37 0.63
10 48 (45+, 48] 1 2 1/2 1/2 0.18 0.82
11 161+ (48, 161+] 0 1 0 1 0.18 0.82

e.g.

Ŝ(0) = 1

Ŝ(9) = Ŝ(0)× 11− 1

11
= 0.91
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Ŝ(13) = Ŝ(9)× 10− 1

10
= 0.82; Ŝ(13+) = Ŝ(13)× 9− 0

9
= Ŝ(13) = 0.82

Ŝ(18) = Ŝ(13)× 8− 1

8
= 0.72

Ŝ(23) = Ŝ(18)× 7− 1

7
= 0.61

Ŝ(28+) = Ŝ(23)× 6− 0

6
= Ŝ(23) = 0.61

Ŝ(31) = Ŝ(23)× 5− 1

5
= 0.49

Ŝ(34) = Ŝ(31)× 4− 1

4
= 0.37; Ŝ(45+) = Ŝ(34)× 3− 0

3
= Ŝ(34) = 0.37

Ŝ(48) = Ŝ(34)× 2− 1

2
= 0.18; Ŝ(161+) = Ŝ(48)× 1− 0

1
= Ŝ(48) = 0.18.

Example of Greenwood-estimate of the variance of Ŝ(13) :

var(Ŝ(13)) = (0.82)2
(

1
11(11−1) +

1
10(10−1)

)
= 0.0136.
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•Estimates of hazard (risk) :

Let ti, i = 1, · · · ,K denote a distinct ordered death time and let λ(t)
denote the hazard function as in the introduction. λ(t) can be estimated by :

1. estimate at an observed death time ti: λ̃(ti) =
di
ni
,

2. estimate in the interval [ti, ti+1): λ̂(t) =
di

ni(ti+1 − ti)
.

λ̂(t) estimates the hazard rate of death per unit time in the interval
[ti, ti+1). It is referred to as the KM type estimate.

Examples with AML1 data:

λ̃(23) = 1
7 = 0.143

λ̂(26) = 1
7(31−23) = 0.018.
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•Cumulative hazard Estimates :

1. Breslow-estimate

Λ̂(t) = − log(Ŝ(t)) = − log
∏

y(i)6t

(
ni − di
ni

)
, (8)

var(Λ̂(t)) =
∑

y(i)6t

di
ni(ni − di)

=
k∑

i=1

di
ni(ni − di)

, for y(k) 6 t < y(k+1).

2. Nelson-Aalen -estimate (1972, 1978)

Λ̃(t) =
∑

y(i)6t

di
ni
, var(Λ̃(t)) =

∑

y(i)6t

di
n2
i

. (9)

3. Harrington-Fleming estimator of S :

ŜHF(t) = exp(−Λ̃(t)) =
∏

y(i)6t

exp(−di
ni
). (10)
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Examples with AML1 data:

Λ̂(26) = − log Ŝ(26) = − log(0.614) = 0.488,

Λ̃(26) =
1

11
+

1

10
+
1

8
+

1

7
= 0.4588.

Note that if there were no censored observations, S is estimated by the
e.s.d.f. Sn(t) which is a right continuous step function with steps down at
each t(i). The KM estimator Ŝ(t) is also a right continuous step function
which steps down only at an uncensored observation. When there are no cen-
sored data values, KM reduces to the empirical survival d.f.

•Confidence bounds of the hazard function :

Confidence intervals for S(t) depends upon theoretical results.

31



1. Using Greenwood’s standard error, one get the confidence interval

exp
(
log Ŝ(t)± 1.96σΛ̂(t)

)
.

This confidence interval is the default one in the R package survfit and
is obtained by using the delta-method. The log-transform on Ŝ(t) gives
other more efficient intervals. These intervals are called ”log” and in the
survfit function, you must specify conf.int=”plain”.

2. Kalbfleisch and Printice (1980), using the transformW = log(− log(Ŝ(t)))
which estimates log(− log(S(t))) and the delta-method, suggests an ap-
proximate (1− α)× 100% C.I. given by

(
Ŝ(t)

)exp(zα/2σW )

6 S(t) 6
(
Ŝ(t)

)exp(−zα/2σW )

where σW =
√
varW . To get these intervals in R commands, specify

conf.int=”log-log” in the survfit function.
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2.3 Comparison of two binomial populations : Fisher’s exact test

Suppose we have two populations, and an individual in either population can
have one of two characteristics. For example, Population 1 might be cancer
patients under a certain treatment and Population 2 cancer patients under a
different treatment. The patients in either group may either die within a year
or survive beyond a year.

The data are summarized in the following 2 × 2 contingency table. Our
interest here is to compare the two binomial populations, which is common in
medical studies.

Populations Dead Alive Totals
Population 1 a b n1

Population 2 c d n2

Totals m1 m2 n

34



Denote

p1 = P {Dead | Population1}
p2 = P {Dead | Population2} .

The null hypothesis of the test is H0 : p1 = p2.

If the margins of this 2× 2 table are considered fixed, the random variable
A, which is the entry in the (1, 1) cell, has a hypergeometric distribution under
H0 with :

P {A = a} =
C(n1, a).C(n2, m1 − a)

C(n,m1)

where C(n, k) = (nk).
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Let t1 < t2 < · · · , < tK be the ordered times of deaths. At all time ti set

. ni = n the number of subjects at risk in the two populations together;

. di = m1 the number of observed deaths in the two populations together;

. nli and dli the analogous of ni and di in the population l, l = 1, 2;

. e1i = EH0(Ai)) = nipi = di
n1i

ni
.

The statistic

U =

K∑

i=1

Wi(d1i − e1i). (11)

is a centred r.v. and by independence of the variables Ai = d1i, i = 1, · · · ,K,
we have

V = var(U ) =
∑

of variances =

K∑

i=1

W 2
i vi. (12)

where vi = VarH0[Ai] = var(d1i) =
ni − di
ni − 1

di
n1in2i

n2
i

.
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If K is big enough or if the margins of each table are big, then U is approxi-
matively normally distributed. 3 choices of weighting Wi lead to the following
test statistics :

a) Wi = 1 (that is, all deaths have the same weight) yields the Mantel-
Haenszel or log-rank test given by

χ2
1 =

(O1 − E1)
2

V
.

where O1 =
∑K

i=1 d1i is the number of the deaths in the population 1 and

E1 =
∑K

i=1 e1i is the number of the expected deaths in population 1 under
H0. Similarly one defines considering the population 2

χ2
1 =

(O2 − E2)
2

V
.

b) Wi = ni (that is, the first deaths have larger weights than the next deaths)
yields Gehan’s test statistic;

c) Wi = S∗
i =

∑i
j=1

nj
nj+dj

yields Peto and Prentice test statistic.
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Considering that the sum of observed deaths in the two population together
equals to the expected sum of deaths in the two populations under H0, i.e.

O1 +O2 = E1 + E2 and V = var(O1 − E1) = var(O2 − E2),

the log-rank test statistic is

χ2
1 =

(O1 − E1)
2

V
=

(O2 − E2)
2

V

and one can show that

χ2
a =

(O1 − E1)
2

E1
+
(O2 − E2)

2

E2

is always less than χ2
1. So the rejection of H0 with χ2

a leads to the rejection
of H0 based on χ2

1.
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Exemple 2.2
12 brain tumour patients randomized to radiation (group 1) or radiation +
chemotherapy (Group 2):

Group Survival times (in weeks)
Group 1 10 12+ 26 28 30 41
Group 2 15+ 24 30 42 40+ 42+

Here K = 6. Recalling that for all i = 1, · · · ,

e1i = di
n1i

ni
, O1 =

∑
d1i, E1 =

∑
e1i

e2i = di
n2i

ni
, O2 =

∑
d2i, E2 =

∑
e1i

we have
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Table 3: Calculus for MH statistic.

i ti n1i n2i ni d1i d2i di e1i e2i
1 10 6 6 12 1 0 1 1/2 1/2

2 24 4 5 9 0 1 1 4/9 5/9

3 26 4 4 8 1 0 1 1/2 1/2

4 28 3 4 6 1 0 1 3/7 4/7

5 30 2 4 6 1 1 2 2/3 4/3

6 41 1 2 3 1 0 1 1/3 2/3

7 42 0 2 2 0 1 1 0 1

Totaux 5 3 2.87 5.13

Hence

χ2
C =

(O1 − E1)
2

E1
+
(O2 − E2)

2

E2
= 2.46

and χ2
1(0.95) = 3.84. We conclude that there is no significant difference

in survivor in the two groups al the level α = 5%.
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Remarks 2.2
The S/R function survdiff provides the log-rank MH test by default. Its
first argument takes a Surv object. It gives the square of the MH statistic
which is then an approximate chi-square statistic with 1 degree of freedom.
This is a two-tailed test. Hence, the p-value is twice that of the MH above.

The survdiff function contains a ”rho” parameter. The default value,
rho = 0, gives the log-rank test. When rho = 1, this gives the Peto test.
This test was suggested as an alternative to the log-rank test by Prentice and
Marek (1979). The Peto test emphasizes the beginning of the survival curve
in that earlier failures receive larger weights. The log-rank test emphasizes
the tail of the survival curve in that it gives equal weight to each failure
time. Thus, choose between the two according to the interests of the study.
The choice of emphasizing earlier failure times may rest on clinical features
of one’s study.
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Hazard ratio as a measure of effect:

The hazard ratio is a descriptive measure of the treatment effect on survival.
e.g. if x is a covariate with values in {x1, x2}, one can compute

λ̂(t|x = x2)

λ̂(t|x = x1)
or

λ̃(t|x = x2)

λ̃(t|x = x1)

and then, interpret them in the context of the study.

Example: Consider in AML study, x = 1 if ”maintained” and x = 0 if
nonmaintained. The two hazard ratios of nonmaintained to maintained are
given by :

λ̂(15|x = 0)

λ̂(15|x = 1)
=

0.011

0.020
= 0.55 and

λ̂(25|x = 0)

λ̂(25|x = 1)
=

0.042

0.018
= 2.33.

This means that, the nonmaintained group has 55% of the risk of those main-
tained of relapsing at 15 weeks. However, on the average, those nonmaintained
have 2.33 times the risk of those maintained of relapsing at 25 weeks.
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3 PARAMETRIC METHODS

Parametric models assume that the failure time has the density function
f(t; θ), where θ = (θ1, θ2, · · · , θm) is the unknown vector of parameters. The
density and survival functions are completely specified if θ is known.

3.1 Frequently used continuous models

Frequently used parametric models assume that T follows
1. exponential distribution, in which case m = 1

2. Weibull distribution, in which case m = 2

3. log-normal distribution, in which case m = 2

4. log-logistic distribution, in which case m = 2 and

5. gamma distribution, in which case m = 2.
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Let us recall the properties of each of those distributions.
Let T be the lifetime of interest. Denote by

. F (t) the probability distribution function (d.f.),

. S(t) = 1− F (t) the survivor function,

. f(t) = F ′(t) the probability density function (p.d.f.),

. λ(t) = f(t)
1−F (t) the hazard rate function,

. tp = inf {t : S(t) ≤ 1− p} the p-th quantile,

. Λ(t) =
∫ t

0 λ(s)ds the cumulative hazard function,

. E(T ) =
∫ +∞
0 S(t)dt the mean and

. var(T ) = E(T − E(T ))2 the variance of T .
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3.1.1 Exponential distribution

The lifetime T is exponentially distributed with parameter λ > 0 if we have

density survivor hazard rate mean variance pth quantile

f(t) = λe−λt S(t) = e−λt λ(t) = λ E(T ) = 1
λ

var(T ) = 1
λ2

tp = −λ−1 log(1− p)

By the relationship log(Λ(t)) = log(− log(S(t))) = log(λ) + log(t) or,
equivalently expressed with log(t) on the vertical axis,

log(t) = − log(λ) + log(− log(S(t))) (13)

the plot of y = log(t) versus x = log(− log(S(t)) is a straight line with slope
1 and y-intercept − log(λ). The exponential is a special case of both the
Weibull and gamma models, each with their shape parameter equal to 1.
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3.1.2 Weibull distribution

T follows the Weibull distribution with parameters λ > 0 and α > 0 if we
have the following table

density survivor hazard rate mean

f(t) = λα(λt)α−1e−(λt)α S(t) = e−(λt)α λ(t) = λα(λt)α−1
E(T ) = 1

λ
Γ(1 + 1

α
)

variance p-th quantile

var(T ) = 1
λ2
Γ(1 + 2

α)− 1
λ2
(Γ(1 + 1

α))
2 tp = λ−1(− log(1− p))

1
α

where Γ(t) denotes the gamma function defined by Γ(t) =

∫ +∞

0

xt−1e−xdx,

t > 0. The parameter α is called the shape parameter and λ is a scale
parameter. The effect of different values of λ is just to change the scale on
the horizontal (t) axis.
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By the relationship log(Λ(t)) = log(− log(S(t))) = α(log(λ) + log(t)),
equivalently expressed with log(t) on the vertical axis,

log(t) = − log(λ) + σ log(− log(S(t))) (14)

where σ = 1
α, the plot of y = log(t) versus x = log(− log(S(t)) is a straight

line with slope σ = 1
α and y-intercept − log(λ).

The Weibull distribution is intrinsically related to the extreme value distri-
bution. The natural log transform of a Weibull random variable produces an
extreme value random variable. This relationship is exploited quite frequently,
particularly in the statistical computing packages and in diagnostic plots.

T follows the extreme (minimum) value distribution with parameters µ and
σ > 0 if T has
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density survivor mean variance p-th quantile

f(t) = 1
σe

t−µ
σ −e

t−µ
σ S(t) = e−e

t−µ
σ µ− γσ π2

6 σ
2 tp = µ + σ.a(p)

where a(p) = log(− log(1− p)), γ = 0.5772... denotes Euler’s constant, µ
is the location parameter (it is 0.632-th quantile) and t can also be negative
so that −∞ < t < +∞. The standard extreme value distribution has µ = 0
and σ = 1.

Further the following relationship can be easily shown :

If T is a Weibull random variable with parameters α and λ, then Y =
log(T ) follows an extreme value distribution with µ = − log(λ) and σ =
α−1. The r.v. Y can be represented as Y = µ + σZ, where Z is a
standard extreme value r.v., as the extreme value distribution is a location
and scale family of distributions.
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3.1.3 log-normal distribution

T is log-normally distributed with parameters µ and σ > 0 denoted by
T  LN(µ, σ) if Y = log(T ) is normally distributed with mean and variance
specified by µ and σ2 respectively. Hence Y is of the form Y = µ + σZ,
where Z is a standard normal r.v. We have the following table for T with
α > 0 and λ > 0 and where Φ(t) denotes the standard normal d.f.

density survivor hazard rate mean variance

f(t) = α√
2πt

e−
α2(log(λt))2

2 S(t) = 1− Φ(α log(λt)) λ(t) = f(t)
S(t) eµ+

σ2

2 e2µ+σ2(eσ
2 − 1)

with µ = − log(λ) and σ = 1
α.

The hazard function has value 0 at t = 0, increases to a maximum, and
then decreases, approaching zero as t becomes large.
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3.1.4 log-logistic distribution

T is log-logistically distributed with parameters µ and σ > 0 denoted by
T  Llogist(µ, σ) if Y = log(T ) is logistically distributed with location pa-
rameter µ and scale parameter σ. Hence Y is also of the form Y = µ+ σZ,
where Z is a standard logistic r.v. with density function f(z) = ez

(1+ez)2
, z ∈ R.

Z is a symmetric r.v. with mean 0 and variance π2

3 , and with slightly heavier
tails than the standard normal, the excess in kurtosis being 1.2. We have the
following table for T with α > 0 and λ > 0 :

density survivor hazard rate pth quantile

f(t) = λα(λt)α−1

(1+(λt)α)2
S(t) = 1

1+(λt)α λ(t) = λα(λt)α−1

1+(λt)α λ−1( p
1−p)

1
α

with µ = − log(λ) and σ = α−1.
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Note that the hazard function of log-logistic distribution is identical to the
Weibull hazard aside from the denominator factor 1 + (λt)α. For α < 1 it is
monotone decreasing from ∞ and is monotone decreasing from λ if α = 1. If
α > 1, the hazard resembles the log-normal hazard as it increases from zero
to a maximum at t = 1

λ
(α− 1)1/α and decreases toward zero thereafter.

Note also that
S(t)

1− S(t)
= (λt)−α. It easily follows that log(t) is a linear

function of the log-odds of the survival beyond t. That is

log(t) = µ + σ

(
− log(

S(t)

1− S(t)
)

)
, (15)

where µ = − log(λ) and σ = 1
α. Thus the plot of y = log(t) against

x = − log( S(t)
1−S(t)) is a straight line with slop σ and y-intercept µ.
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Summary:

Almost all distributions of lifetime T we work with, have the property that
the distribution of the log-transform log(T ) is a member of the location
and scale family of distributions. The common features are :

• The time T distributions have two parameters : scale λ and shape α.

• In log-time, Y = log(T ), the distributions have two parameters : location
µ = − log(λ) and scale σ = 1

α.

• Each can be expressed in the form

Y = log(T ) = µ + σZ (16)

where Z is the standard member; that is µ = 0 (λ = 1) and σ = 1 (α = 1).

• They are log-linear models.
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The three distributions previously considered are summarized as follow

Law of T Weibull Log-normal Log-logistic
Law of Y = log(T ) Extreme value distribution Normal Logistic

If the true distribution of Y = log(T ) is one of the above, then the p-
th quantile yp is a linear function of zp, the p-th quantile of the standard
member of the specified distribution. The straight line has slope σ and y-
intercept µ. Let tp denote an arbitrary p-th quantile. The linear relationships
for yp = log(tp) reported in expressions (14), (15), (16) are summarized in
the following table

Table 4: Relationships between quantiles and transformed quantiles.

tp quantile yp = log(tp) quantile form of standard quantile zp
Weibull extreme value log(− log(S(tp))) = log(− log(1− p))

log-normal normal Φ−1(p) where Φ denotes the standard

normal d.f.

log-logistic logistic − log
(

S(tp)

1−S(tp)

)
= − log(1−p

p )
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Construction of the quantile-quantile (Q-Q) plot

Let Ŝ(t) denote the K-M estimator of survival probability S(t). Let ti, i =
1, · · · , r 6 n, denote the ordered uncensored observed failure times. For each
uncensored sample quantile yi = log(ti), the estimated failure probability is
p̂i = 1 − Ŝ(ti). Use p̂i to obtain the parametric standard quantile zi as in
Table 4. As the K-M estimator is distribution free and consistently estimates
the ”true” survival function, for large sample sizes n, the zi should reflect
the ”true” standard quantiles. Hence, if the proposed model fits the data
adequately, the points (zi, yi) should lie close to a straight line with slope σ
and y-intercept µ. The plot of the points (zi, yi) is called a quantile-quantile
(Q-Q) plot.
An appropriate line to compare the plot pattern to is yp = µ̂ + σ̂zp, where

µ̂ and σ̂ denote the maximum likelihood estimates of µ and σ to be discussed
in the next section. The more closely the plot pattern follows this line, the
more evidence there is in support of the proposed model. The Q-Q plot is a
major diagnostic tool for checking model adequacy.
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3.2 Maximum likelihood estimation

Recall the definition of censored data (Y, δ). We need to calculate the joint
likelihood of the pair (Y, δ).

Type I censoring case

We check that the likelihood function for the n i.i.d. random pairs (Yi, δi)
is given by

L =

n∏

i=1

f(yi)
δiS(tc)

1−δi (17)
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Type II censoring case

In this case, denoting by T(1), · · · , T(r) the r smallest lifetimes out of the
n i.i.d. lifetimes T1, · · · , Tn, we can check that the likelihood function of
T(1), · · · , T(r) is

L =
n!

(n− r)!
f(t(1)) · · · f(t(r))(S(t(r)))n−r. (18)

Type III or Random censoring case
Denote here by F , f and Sf (resp. G, g and Sg) the probability distribution
function, the probability density function and the survivor function of the life
time T (resp. the random censor time C). For each individual the lifetime
Ti and a censor time Ci are usually assumed to be independent and the
observation is the pair (Yi, δi) where

Yi = min(Ti, Ci) and δi = 1I{Ti6Ci} =

{
1 if Ti 6 Ci

0 if Ti > Ci

56



We check also that the likelihood function of the n pairs (Yi, δi) is given by

L =
n∏

i=1

(f(yi)Sg(yi))
δi(g(yi)Sf(yi))

1−δi

=

(
n∏

i=1

(Sg(yi))
δi(g(yi))

1−δi

)
.

(
n∏

i=1

(f(yi))
δi(Sf(yi))

1−δi

)
(19)

But if the distribution of C does not involve any parameters of interest,
then the first factor plays no role in the maximization process. Hence, the
likelihood function can be taken to be

L =
n∏

i=1

(f(yi))
δi(Sf(yi))

1−δi (20)
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In the complete data setting (all δi = 1) that is, there is no censoring the
likelihood has the usual form

L =
n∏

i=1

f(yi) (21)

If the p.d.f. is f(t|θ), where θ belongs to some parameter space Θ ⊂ R
d, d >

1, the likelihood function L of the sample is regarded as a function of θ denoted
by L(θ) given by

L = L(θ) =
n∏

i=1

f(ti|θ). (22)

The maximum likelihood estimator (MLE), denoted by θ̂, is the value of
θ ∈ Θ that maximizes L(θ) or, equivalently, maximizes the log-likelihood

logL(θ) =

n∑

i=1

log f(ti|θ).
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MLE’s possess the invariance property : the MLE of a function of θ, say
φ(θ), is φ(θ̂).

Under all types of random censoring models, we see that the log-likelihood
for the maximization process can be taken to be of the general form

logL(θ) = log
n∏

i=1

(f(yi|θ))δi(Sf(yi|θ))1−δi

=
∑

u

log f(yi|θ) +
∑

c

log Sf(yi|θ) (23)

where u and c mean sums over the uncensored and censored observations,
respectively.
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Let I(θ) denote the Fisher information matrix with elements

Ij,k(θ) = −E

[
∂2

∂θj∂θk
logL(θ)

]
.

As we are working with random samples (i.i.d. observations), we point out
that I(θ) can be expressed as

I(θ) = nI1(θ)

where I1(θ) =
[
−E( ∂2

∂θj∂θk
log f(y1|θ))

]
, 1 ≤ i, j ≤ d is the Fisher informa-

tion matrix of any one of the observations.

The MLE θ̂ has the following large sample distribution:

θ̂ ⇒ MVN(θ, I−1(θ)) (24)

where ⇒ means ”asymptotically distributed” and MVN denotes multi-
variate normal.
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The i-th diagonal element of I−1(θ) is the asymptotic variance of the i-th
component of θ. The off-diagonal elements are the asymptotic covariances of
the corresponding components of θ. If θ is a scalar (real valued), then the

asymptotic variance, denoted vara, of θ is vara(θ̂) =
1

I(θ̂)
, where

I(θ) = −E(∂
2 logL(θ)
∂θ2

).

For censored data, this expectation is a function of the censoring distribu-
tion G as well as the survival time distribution F . Hence, it is necessary to
approximate I(θ) by the observed information matrix i(θ) evaluated at

the MLE θ̂, where

i(θ) =

[
− ∂2

∂θj∂θk
logL(θ)

]
. (25)

For univariate case, i(θ) = −∂2 logL(θ)
∂θ2

and vara(θ̂) is approximated by

(i(θ̂))−1.
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Delta method:

The delta method is useful for obtaining limiting distributions of smooth
functions of a MLE. When variance of a MLE includes the parameter of inter-
est, the delta method can be used to remove the parameter in the variance.
This is called the variance-stabilization. We describe it for the univariate case.

Let Z be a r.v. with mean µ and variance σ2 and suppose we want to
approximate the distribution of some function g(Z). Take a first order Taylor
expansion of g(Z) about µ and ignore the higher order terms to get

g(Z) ≈ g(µ) + g′(µ)(Z − µ).

Then E(g(Z)) ≈ g(µ) and var(g(Z)) ≈ (g′(µ))2σ2. The delta method tells
us that, if Z ⇒ N (µ, σ2), then

g(Z) ⇒ N (g(µ), (g′(µ))2σ2). (26)
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Example:

LetX1, · · · , Xn be i.i.d. from a Poisson distribution with mean µ. Then the
MLE of µ is µ̂ = Xn. We know that the mean and the variance of Z = Xn

are µ and
µ

n
. Take g(Z) = Z

1
2 . Then g(µ) = µ

1
2 and X

1
2
n ⇒ N (a, b2) with

mean a = µ
1
2 and variance b2 = 1

4n.

Bivariate version of the delta method :

Let (
X
Y

)
⇒ MVN

((
µx

µy

)
,

(
σ2
x σxy

σxy σ2
y

))

and suppose we want the asymptotic distribution of g(x, y) where g : R2 → R

is a bivariate function that yields a scalar.
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Then the 1st order Taylor approximation of g(x, y) about (µx, µy) is

g(x, y) = g(µx, µy) + (x− µx)
∂

∂x
g(µx, µy) + (y − µy)

∂

∂y
g(µx, µy).

Then
g(X,Y ) ⇒ N (µ, σ2)),

where µ ≈ g(µx, µy) and

σ2 ≈ σ2
x(

∂

∂x
g(µx, µy))

2 + σ2
y(

∂

∂y
g(µx, µy))

2 + 2σxy
∂

∂x
g(µx, µy)

∂

∂y
g(µx, µy)

are the mean and asymptotic variance respectively.

The delta method for a bivariate vector field:

Let Σ denote the asymptotic covariance matrix of the random vector (X, Y )′

given above. We want the asymptotic distribution of g(X, Y ) where g : R2 →
R

2 is defined by (x, y) 7→ (g1(x, y), g2(x, y)). We apply a 1st order Taylor
approximation for vector fields of g about µ = (µx, µy)

′.
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Let A denote the Jacobian matrix of g evaluated at µ. That is,

A =

(
∂g1(µ)

∂x

∂g1(µ)

∂y
∂g2(µ)

∂x

∂g2(µ)

∂y

)
.

Then the first order Taylor approximation is

g(x, y) =

(
g1(µx, µy)
g2(µx, µy)

)
+ A′

(
x− µx

y − µy

)
.

The delta method now yields the following asymptotic distribution :

g(X, Y ) ⇒ MVN(M,Ω),

where M =

(
g1(µx, µy)
g2(µx, µy)

)
and Ω = A′ΣA are the asymptotic mean vector

and covariance matrix respectively.
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3.3 Confidence intervals and tests

For confidence intervals or for testing H0 : θ = θ0, we can construct the
asymptotic z-intervals with the standard errors (s.e.) taken from the diagonal
of the asymptotic covariance matrix which is the inverse of the information
matrix I(θ) evaluated at the MLE θ̂ if necessary. The s.e.’s are the square
roots of these diagonal values. In summary:

An approximate (1− α)× 100% confidence interval for the parameter θ is
given by

θ̂ ± zα
2
s.e.(θ̂) (27)

where zα
2
is the upper α

2
quantile of the standard normal distribution and by

(25), s.e. is the square root of var(θ̂) ≈ (i(θ̂))−1 = −(∂
2 logL(θ)

∂θ2
)−1.
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If we are testing a vector-valued θ, we have three well known procedures.
Assume θ0 has d-components, d > 1 and θ̂ denotes the MLE.

• The Wald statistic

(θ̂ − θ0)
′I(θ0)(θ̂ − θ0) ⇒ χ2

d under H0.

• The Rao statistic

∂

∂θ
logL(θ0)

′I−1 ∂

∂θ
logL(θ0) ⇒ χ2

d under H0.

Note that Rao’s method does not use the MLE. Hence, no iterative calcu-
lation is necessary.

• The Neyman-Pearson/Wilks likelihood ratio test (LRT):
Let t represent the vector of n observed values; that is, t′ = (t1, · · · , tn).
The LRT statistic is given by

r∗(t) = −2 log

(
L(θ0)

L(θ̂)

)
⇒ χ2

d under H0. (28)
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To test H0 : θ = θ0 against HA : θ 6= θ0, we reject for small values of
L(θ0)

L(θ̂)
.

Equivalently, we reject for large values of r∗(t).

For joint confidence regions we simply take the region of values that
satisfy the elliptical region formed with either the Wald or Rao statistic with
I(θ) or i(θ) evaluated at the MLE θ̂.

For example, an approximate (1− α)× 100% joint confidence region for θ
is given by {

θ : Wald 6 χ2
α

}
,

where χ2
α is the chi-square upper αth-quantile with d degrees of freedom.
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3.4 One sample problem

3.4.1 Fitting data to the exponential model

Case 1 : No censoring

All ”failures” are observed, the T1, · · · , Tn are iid.

• Likelihood : L(λ) =

n∏

i=1

λe−λti = λn exp(−λ

n∑

i=1

ti).

• MLE : Setting
∂ logL(λ)

∂λ
= 0 gives

λ̂ =
n∑n
i=1 ti

=
1

T̄

The likelihood estimator of the mean θ = 1
λ is θ̂ = T̄ .
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• Exact distribution theory :
Since the Ti are iid exponential(λ), the sum

∑n
i=1 Ti has gamma distribution

with parameters k = n and λ. From basic theory, we know that

2λ
n∑

i=1

Ti =
2nλ

λ̂
❀ χ2

2n. (29)

This can be used as a pivotal statistic to construct both test and confidence
interval.

• Confidence interval (C.I.) for λ.
By an observation of a picture of the Chi-square distribution, it is easy to
see that, with probability 1− α,

χ2
1−α/2 6

2nλ

λ̂
6 χ2

α/2.

It then follows from simple algebra that : a (1 − α) × 100% C.I. for λ is
given by

λ̂

2n
χ2
1−α/2 6 λ 6

λ̂

2n
χ2
α/2.
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Let θ = 1
λ
be the mean of the distribution. It follows that, a (1−α)×100%

C.I. for θ is given by
2nT̄

χ2
α/2

6 θ 6
2nT̄

χ2
1−α/2

.

• Confidence interval (C.I.) for the p-th quantile.
The p-th quantile is the tp such that F (tp) = p. Thus tp is such that

1 − e−λtp = p. Therefore, tp = − log(1−p)
λ . By the invariance property of

MLE’s, the MLE of tp is t̂p = −λ̂−1 log(1− p).

e.g. the MLE of the median is median = −T̄ log(0.5) = T̄ log(2).

Example with AML1 data : pretending that there is no censored points, we
have n = 11,

∑n
i=1 ti = 423, degrees of freedom=2 × 11 = 22, MLE’s :

θ̂ = t̄ = 38.4545, λ̂ = 0.026.

For a 95% confidence interval, χ2
0.02522 = 36.78, χ2

0.97522 = 10.98.
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• A 95% C.I. for λ is 0.026
2×11

× 10.98 6 λ 6 0.026
2×11

× 36.78 or 0.01298 6 λ 6
0.04347.

• A 95% C.I. for θ the mean survival (in weeks) is 2.423
36.78 6 θ 6 2.423

10.98 or
23 6 θ 6 77.05.

• The MLE of the median :

median = −T̄ log(0.5) = −38.4545 log(0.5) = 26.6546 weeks < T̄ .

• Test of H0 : mean θ = 30 weeks against HA : θ 6= 30 or equivalently
H0 : λ = 1/30 = 0.033 weeks against HA : λ 6= 0.033.

At the 5% level of significance, we can use the exact C.I. for θ obtained
above. We reject H0 if the 95% C.I. does not contain 30. Therefore, we do
not reject H0. That is, the mean survival is not significantly different from
30 weeks.
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For one-sided test, the significance-level would be 2.5%. We can base a test
on the test-statistic

T ∗ = 2λ0

n∑

i=1

Ti ❀ χ2
2n under H0 : λ = λ0.

To test against HA : λ 6= λ0, construct a two-tailed size α critical region.
Here

T ∗ = 20033× 423 = 28.2

At α = 0.05, df = 22, χ2
0.975 = 10.98 and χ2

0.025 = 36.78. We fail to reject
H0.

This is a flexible test as you can test one-sided alternatives. For example,
to test HA : λ < λ0 (θ > θ0), the computed p-value is,

p− value = P(T ∗
> 28.2) = 0.17.

Again, we fail to reject H0. The p-value for the two-sided alternative is then
0.34.
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• The likelihood ratio test (LRT)
The LRT can be shown to be equivalent to the two-sided test on the test
statistic T ∗ just above. Therefore, we use the asymptotic distribution and
then compare. The test statistic is

r∗(t) = −2 log

(
L(λ0)

L(λ̂)

)
⇒ χ2

1.

We reject H0 : θ = 30 when r∗(t) is large.

r∗(t) = −2 logL(λ0) + 2 logL(λ̂)

= −2n log(λ0) + 2λ0nt̄ + 2n log(1/t̄)− 2n

= −2× 11× log(1/30) +
2

30
× 423 + 2× 11× log(11/423)− 2× 11

= 0.7378.

The p-value=P(r∗(t) > 0.7378) ≈ 0.39. Therefore, we fail to reject H0.
This p-value is very close to the exact p-value 0.34 computed above.
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Case 2: Random censoring

Let u, c, and nu denote uncensored, censored, and number of uncensored
observations, respectively. The n observed values are now represented by the
vectors y and δ, where y′ = (y1, · · · , yn) and δ′ = (δ1, · · · , δn). Then
• Likelihood: By (19) and (23), we have

L(λ) = λnu exp(−λ
∑

u

yi) exp(−λ
∑

c

yi) = λnu exp(−λ
n∑

i=1

yi).

logL(λ) = nu log(λ)− λ
n∑

i=1

yi,
∂2 logL(λ)

∂λ2
= −nu

λ2
= −i(λ),

We deduce the maximum likelihood estimator

• MLE

λ̂ =
nu∑n
i=1 yi

and vara(λ̂) = (−E(
−nu

λ2
))−1 =

λ2

E(nu)
,

where E(nu) = n.P(T 6 C).
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From (24),
λ̂− λ√
λ2/E(nu)

⇒ N (0, 1).

We replace E(nu) by nu since we don’t usually know the censoring distri-
bution G(.). We substitute the unknown parameter λ in the asymptotic

variance by λ̂ and obtain vara(λ̂) =
λ̂2

nu
=

1

i(λ̂)
,

where i(λ) is just above. The MLE for the mean θ = 1/λ is simply

θ̂ =

∑n
i=1 yi
nu

.

Example, on the AML data, nu = 7,

λ̂ =
7

423
= 0.0165 and vara(λ̂) =

λ̂2

7
=

0.01652

7
.

• A 95% C.I. for λ is by (27) given by

λ̂± z0.025s.e.(λ̂) =: 0.0165± 1.96
0.0165√

7
=: [0.004277, 0.0287].
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• A 95% C.I. for θ, the mean survival, can be obtained by inverting the
previous interval for λ. This interval is: [34.8, 233.808] weeks.

Both intervals are very skewed. However, as θ̂ = 1/λ̂ = 60.42856 weeks,
we have θ = g(λ) = 1/λ and we can use the delta method to obtain the
asymptotic variance of θ. As g′(λ) = −λ−2, the asymptotic variance is

vara(θ̂) =
1

λ2E(nu)
≈ 1

λ̂2nu

=
θ̂2

nu
. (30)

Hence a second 95% C.I. for θ, the mean survival, is given by

θ̂±z0.025s.e.(θ̂) =: 60.42856±1.96
1√

70.0165
=: [15.66246, 105.1947] weeks.

Notice this is still skewed, but much less so, and it is much narrower. Here
we use the asymptotic variance of θ directly, and hence, eliminate one source
of variation. However, the asymptotic variance still depends on λ.
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• The MLE of the p-th quantile

t̂p = −1

λ̂
log(1− p) = −

∑n
i=1 yi
nu

log(1− p).

Thus, the MLE of the median is

median = −423

7
log(0.5) = 41.88 weeks.

Notice how much smaller the median is compared to the estimate θ̂ = 60.43.
The median reflects a more typical survival time. The mean is greatly
influenced by the one large value 161+. Note that

vara(t̂p) = (log(1− p))2 vara(λ̂
−1) ≈ (log(1− p))2

1

λ̂2.nu

.

The vara(λ̂
−1) is given in expression (25). Thus, a 95% C.I. for the median

is given by

t̂0.5 ± 1.96
− log(0.5)

λ̂
√
nu

=: 41.88± 1.96
− log(0.5)

0.0165
√
7
=: [10.76, 73] weeks.
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• The MLE of the survivor function S(t) = e−λt

Ŝ(t) = e−λ̂t = e−0.0165t.

For any fixed t, Ŝ(t) is a function of λ̂. We can take a log-log transformation
and have

log(− log(Ŝ(t))) = log(λ̂) + log(t).

Hence,

vara{log(− log(Ŝ(t)))} = vara(log(λ̂)) ≈
1

nu
.

It follows from the delta method that for each t,

log(λ̂) ⇒ N (log(λt),
1

nu
).

Then, with some algebraic manipulation, a (1−α)× 100% C.I. for the true
probability of survival beyond time t, S(t), is given by

exp

{
log(Ŝ(t)) exp

(
zα/2√
nu

)}
6 S(t) 6 exp

{
log(Ŝ(t)) exp

(−zα/2√
nu

)}
.
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• The likelihood ratio test: see (28)

r∗(t) = −2 logL(λ0) + 2 logL(λ̂)

= −2nu log(λ0) + 2λ0

n∑

i=1

yi + 2nu log(
nu∑n
i=1 yi

)− 2nu

= −2× 7× log(1/30) +
2

30
.423 + 2× 7× log(7/423)− 2× 7

= 4.396.

The p-value = P(r∗(y) > 4.396) ≈ 0.036. Therefore, here we reject
H0 : θ = 1/λ = 30 and conclude that mean survival is > 30 weeks.

Computer application
To fit parametric models (with the MLE approach) for censored data, use
the S or R function survReg. It fits an exponential model to the data,
yields point and 95% C.I. estimates for both the mean and the median, and
provides a Q-Q plot for diagnostic purposes.
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3.4.2 Fitting data to the Weibull and log-logistic models

The S or R survReg function is used to fit data to the Weibull, log-logistic
or log-normal models as for exponential model which is just a Weibull with
shape α = 1 and θ = 1/λ. survReg uses by default a log link function
which transforms the problem into estimating location µ = − log(λ) and
scale σ = 1/α.

Using the function summary(fit) resulting from survReg evaluated at
the ”Weibull”, ”log-logistic”, or ”log-normal”, we get the MLE’s µ̂ and
σ̂. Once the parameters are estimated via survReg, we can use S functions
pweibull(q,α, λ−1), plogis(q,µ, σ), pnorm(q, µ, σ), for the distributions
F (t) or qweibull(p,α, λ−1), qlogis(p,µ, σ), qnorm(p, µ, σ) for the
quantiles tp to compute estimated survival probabilities and quantiles.
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3.5 Two-sample problem

In this section we compare two survival curves from the same parametric
family. It is equivalent to compare the two scale parameters λ = (λ1, λ2).
In the log-transformed problem, this compares the two location parameters
µ = − log(λ) = (µ1, µ2).

The nonparametric log-rank test was used to detect a significant difference
between the two K-M survival curves for two groups. We now explore if any of
the log-transform distributions, which belong to the location and scale family
(16), fit this data adequately. The full model can be expressed as a log-linear
model as follows:
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Y = log(T ) = µ̃ + error = θ + β∗group + error

The µ̃ is called the linear predictor.

In case of two groups model (groupe=1 and groupe =0), µ̃ has two values

µ1 = θ + β∗ and µ2 = θ.

Since µ̃ = − log(λ̃), we have λ̃ = exp(−θ − β∗group) and the two values
of λ̃ are

λ1 = exp(−θ − β∗) and λ2 = exp(−θ).

Hence the null hypothesis is:

H0 : λ1 = λ2 ⇐⇒ µ1 = µ2 ⇐⇒ β∗ = 0.
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Recall that the scale parameter in the log-transform model is the reciprocal
of the shape parameter in the original model; that is, σ = 1/α. We test H0

under each of the following cases:

. Case 1 : Assume equal shapes (α); that is, we assume equal scales σ1 =
σ2 = σ. Hence, error= σZ, where the random variable Z has either the
standard extreme value, standard logistic, or the standard normal distribu-
tion. Recall by standard, we mean µ = 0 and σ = 1.

. Case 2 : Assume different shapes; that is, σ1 6= σ2.

We can use the S or R program to fit the data to the Weibull model and
conduct formal tests.
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Model 1: Data come from a same distribution. The Null Model is

Y = log(T ) = θ + σZ,

where Z is a standard extreme value random variable. Example of S code:

> attach(aml)

> weib.fit0 <- survReg(Surv(weeks,status)~1,dist="weib")

> summary(weib.fit0)

Model 2 / Case 1: Data come from distributions with different locations
and equal scales σ. Express this model by

Y = log(T ) = θ + β∗group + σZ.

Example of S code.

> weib.fit1 <- survReg(Surv(weeks,status)~group,dist="weib")

> summary(weib.fit1)
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Model 2 / Case 2: Data come from distributions with different locations
and different scales. Express this model by

Y = log(T ) = θ + β∗group + error.

Fit each group separately. On each group run a survReg to fit the data
weib.fit2.0 and weib.fit2.1. This gives the MLE’s of the two locations µ1

and µ2 and the two scales σ1 and σ2. Example of S code.

> weib.fit2.0 <- survReg(Surv(weeks,status)~1,data=aml[aml$group==0,],

dist="weib")

> weib.fit2.1 <- survReg(Surv(weeks,status)~1,data=aml[aml$group==1,],

dist="weib")

> summary(weib.fit2.0)

> summary(weib.fit2.1)

To test the reduced model against the full model, use the LRT e.g.
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> loglik3 <- weib.fit20$loglik[2]+weib.fit21$loglik[2]

> loglik3

[1] -79.84817

> lrt23 <- -2*(weib.fit1$loglik[2]-loglik3)

> lrt23

[1] 1.346954

> 1 - pchisq(lrt23,1)

[1] 0.2458114 # Retain Model 2.

The following table summarizes the three models weib.fit0, 1, and 2:

Model Calculated parameters the Picture

1 (0) θ, σ same location, same scale

2 (1) θ, β∗, µ1, µ2, σ ≡ µ1 different locations, same scale

3 (2) µ1, µ2, σ1, σ2 different locations, different scales

If we use the log-logistic and log-normal distribution to estimate Model 2,
the form of the log-linear model is the same. The distribution of error terms
is what changes.
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Prelude to parametric regression models

As a prelude to parametric regression models presented in the next chapter,
we continue to explore Model 2 under the assumption that T  Weibull.
That is, we explore

Y = log(T )

= θ + β∗group + σZ

= µ̃ + σZ

where Z is a standard extreme minimum value random variable. Let the linear
predictor µ̃ = − log(λ̃) and σ = 1/α. It follows from page 46 that the hazard
function for the Weibull in this context is expressed as

λ(t|group) = αλ̃αtα−1

= αλαtα−1 exp(βgroup)

= λ0(t) exp(βgroup), (31)

when we set λ = exp(−θ) and β = −β∗/σ.
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The λ0(t) = αλαtα−1 denotes the baseline hazard; that is, when group =
0 or β = 0. Thus, λ0(t) is the hazard function for the Weibull with scale
parameter λ, which is free of any covariate.

The hazard ratio (HR) of group 1 to group 0 is

HR =
λ(t|1)
λ(t|0) =

exp(β)

exp(0)
= exp(β).

If we believe the Weibull model is appropriate, the HR is constant over
follow-up time t. That is, the graph of HR is a horizontal line with height
exp(β).

We say the Weibull enjoys the proportional hazards property to be formally
introduced in the next Chapter.
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On the AML data, we have β̂ =
−β̂∗

σ̂
=

−0.929

0.791
= −1.1745. Therefore,

the estimated HR is ĤR =
λ̂(t|1)
λ̂(t|0)

= exp(−1.1745) ≈ 0.31.

That is, the maintained group has 31% of the risk of the control group’s
risk of relapse. Or, the control group has (1/0.31)=3.23 times the risk of the
maintained group of relapse at any given time t. The HR is a measure of
effect that describes the relationship between time to relapse and group.
If we consider the ratio of the estimated survival probabilities, say at t = 31

weeks, since ˆ̃λ = exp(− ˆ̃µ), we obtain
Ŝ(31|1)
Ŝ(31|0)

=
0.652

0.252
≈ 2.59.

The maintained group is 2.59 times more likely to stay in remission at least
31 weeks. The Weibull survivor function S(t) is given in a table on page 46.
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4 REGRESSION MODELS

Let T denote failure time and x = (x1, · · · , xp)′ represent a vector of
available covariates. We are interested in modelling and determining the re-
lationship between T and x. The primary question is: Do any subsets of the
d covariates help to explain survival time ? If so, how and by what estimated
quantity ?
Exemple 4.1 Let

• x1 denote the sex (x1 = 1 for males and x1 = 0 for females),

• x2=Age at diagnosis,

• x3 = x1.x2 (interaction),

• T=survival time.

Here we introduce four models: the exponential, the Weibull, the Cox propor-
tional hazards, and the accelerated failure time model.
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4.1 Exponential regression model

We first generalize the exponential distribution. Recall that for the expo-
nential distribution, the hazard function λ(t) = λ is constant with respect to
time and that E(T ) = 1

λ. We model the hazard rate λ as a function of the
covariate vector x.

We assume the hazard function at time t for an individual has the form

λ(t|x) = λ0(t).k(x
′β) = λ.k(x′β),

where λ > 0 is a constant, β = (β1, β2, · · · , βp)′ is a vector of regression
parameters (coefficients), x′β = β1x1+β2x2+ · · ·+βpxp and k is a specified
link function.

The function λ0(t) is called the baseline hazard. It’s the value of the hazard
function when the covariate vector x = 0 or β = 0.
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The most natural choice for k is k(x) = exp(x), which implies

λ(t|x) = λ. exp(x′β)

= λ. exp(β1x1 + β2x2 + · · · + βpxp)

= λ. exp(β1x1)× exp(β2x2)× · · · × exp(βpxp).

This says that the covariates act multiplicatively on the hazard rate. Equiv-
alently, this specifies

log(λ(t|x)) = log(λ) + β1x1 + β2x2 + · · · + βpxp = log(λ) + (x′β) = log(λ) + η.

That is, the covariates act additively on the log failure rate. The quantity
η = x′β is called the linear predictor of the log-hazard. Then the survivor
function of T given x is

S(t|x) = exp(−λ(t|x)t) = exp(−λ exp(x′β)t)

and thus, the p.d.f. of T given x is

f(t|x) = λ(t|x)S(t|x) = λ exp(x′β) exp(−λ exp(x′β)t).
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Recall from Section 4, subsection 1, page 48, that if T is distributed expo-
nentially, Y = log(T ) is distributed as the extreme (minimum) value distribu-
tion with scale parameter σ = 1. Here, given x, we have

µ̃ = − log(λ(t|x)) = − log(λ exp(x′β)) = − log(λ)− x′β and σ = 1.

Therefore, given x,

Y = log(T ) = µ̃ + σZ = β∗
0 + x′β∗ + Z,

where β∗
0 = − log(λ), β∗ = −β and Z ❀ f(z) = exp(z − ez), −∞ <

z < +∞, the standard extreme (minimum) value distribution. The quantity
µ̃ = β∗

0 + x′β∗ is called the linear predictor of the log-time.

In summary, λ(t|x) = λ exp(x′β) is a log-linear model for the failure rate
and transforms into a linear model for Y = log(T ) in that the covariates act
additively on Y .
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4.2 Weibull regression model

We generalize the Weibull distribution to regression in a similar fashion.
Recall that its hazard function is λ(t) = αλαtα−1.

To include the covariate vector x write the hazard for a given x as

λ(t|x) = λ0(t). exp(x
′β)

= αλαtα−1 exp(x′β) = α
(
λ(exp(x′β))

1
α

)α
tα−1

= α(λ̃)αtα−1. (32)

where λ̃ = λ. exp(x′β)
1
α .

Again notice that

log(λ(t|x)) = log(α) + α log(λ̃) + (α− 1) log(t)

= log(α) + α log(λ) + x′β + (α− 1) log(t).
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We know that if T ❀ Weibull, then given x, Y = log(T ) = µ̃ + σZ with
Z ❀ standard extreme value distribution, where σ = 1

α
and

µ̃ = − log(λ̃) = − log(λ(exp(x′β))
1
α) = − log(λ)− 1

α
x′β. (33)

Therefore,

Y = β∗
0 + x′β∗ + σZ

= µ̃ + σZ, (34)

where β∗
0 = − log(λ), β∗ = −σβ and µ̃ = β∗

0 + x′β∗. It then follows from
the table on page 46 that the survivor function of T given x is

S(t|x) = exp(−(λ̃t)α). (35)
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From the relationship Λ(t|x) = − log(S(t|x)) for a given x and from ex-
pression (33) for log(λ̃), an expression for the log-cumulative hazard function
follows :

log(Λ(t|x)) = α log(λ̃) + α log(t)

= α log(λ) + α log(t) + x′β (36)

= log(Λ0(t)) + x′β,

where Λ0(t) = − log(S0(t)) = (λt)α.
The log of the cumulative hazard function is linear in log(t) and in the β

coefficients. Thus, for a fixed x value, the plot of Λ(t|x) against t on a log-log
scale is a straight line with slope α and intercept x′β + α log(λ). Expression
(36) in conjunction with expression (32) and relation between Λ(t|x) and
λ(t|x) give

Λ(t|x) = Λ0(t) exp(x
′β) = (λt)α exp(x′β). (37)
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In summary, for both the exponential and Weibull regression model, the
effects of the covariates x act multiplicatively on the hazard function λ(t|x)
which is clear from the form

λ(t|x) = λ0(t). exp(x
′β)

= λ0(t). exp(β1x1 + · · · + βpxp) (38)

= λ0(t). exp(β1x1). exp(β2x2) · · · exp(βpxp).
This suggests the more general Cox proportional hazards model, pre-

sented in the next section. Further, both are log-linear models for T in that
these models transform into a linear model for Y = log(T ). That is, the
covariates x act additively on log(T ) (multiplicatively on T ), which is clear
from the form

Y = log(T ) = µ̃ + σZ = β∗
0 + x′β∗ + σZ.

This suggests a more general class of log-linear models called accelerated
failure time models discussed in a further Section below.
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4.3 Cox proportional hazards (PH) model

For the Cox (1972) PH model, the hazard function is

λ(t|x) = λ0(t). exp(x
′β), (39)

where λ0(t) is an unspecified baseline hazard function free of the covariates
x. The covariates act multiplicatively on the hazard. Clearly, the exponential
and Weibull are special cases. At two different points x and y, the proportion

λ(t|x)
λ(t|y) = exp((x′ − y′)β), (40)

called the hazard ratio, is constant with respect to time t. This defines the
proportional hazards property.
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For any PH model, which includes the Weibull model as well as the Cox
model, the survivor function of T given x is

S(t|x) = exp(−
∫ t

0

λ(u|x)du) = exp

(
− exp(x′β)

∫ t

0

λ0(u)du

)

=

(
exp(−

∫ t

0

λ0(u)du)

)exp(x′β)

= (S0(t))
exp(x′β).

where S0(t) denotes the baseline survivor function.
The p.d.f. of T given x then is

f(t|x) = λ0(t) exp(x
′β)(S0(t))

exp(x′β).

There are two important generalizations :

(1) The baseline hazard λ0(t) can be allowed to vary in specified subsets of
the data.

(2) The regression variables x can be allowed to depend on time; that is,
x = x(t).
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4.4 Cox’s partial likelihood

The hazard function defined in (39) depends on the baseline hazard λ0().
Hence, so does the p.d.f. Cox (1975) defines a likelihood based on conditional
probabilities which are free of the baseline hazard. His estimate is obtained
from maximizing this likelihood. In this way he avoids having to specify λ0(.)
at all. This likelihood is derived heuristically.

Let t(1), · · · , t(r) denote the r 6 n distinct ordered (uncensored) death
times, so that t(j) is the j-th ordered death time. Let x(j) denote the vector
of covariates associated with the individual who dies at t(j). Then, the Cox
partial likelihood function, denoted by Lc(β), is defined by

Lc(β) =
r∏

j=1

Lj(β) =
r∏

j=1

exp(x′(j)β)∑
l∈R(t(j))

exp(x′lβ)
.
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Recall that in the random censoring model we observe the times y1, · · · , yn
along with the associated δ1, · · · , δn where δi = 1 if the yi is uncensored (i.e.,
the actual death time was observed) and δi = 0 if the yi is censored. We can
now give an equivalent expression for the partial likelihood function in terms
of all n observed times :

Lc(β) =
n∏

i=1

(
exp(x′iβ)∑

l∈R(yi)
exp(x′lβ)

)δi

. (41)

Remarks 4.1

1. Cox’s estimates maximize the log-partial likelihood.

2. To analyze the effect of covariates, there is no need to estimate the nui-
sance parameter λ0(t), the baseline hazard function.

3. This partial likelihood is not a true likelihood in that it does not integrate
out to 1 over {0, 1}n × R

n
+.
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4.5 Model Diagnostics

The Cox proportional-hazards regression model is fit in S with the coxph
function (located in the survival library in R).

As is the case for a linear or generalized linear model, it is desirable to
determine whether a fitted Cox regression model adequately describes the
data. Three kinds of diagnostics are considered :
1. for violation of the assumption of proportional hazards;

2. for influential data and

3. for nonlinearity in the relationship between the log hazard and the covari-
ates.

All of these diagnostics use the residuals method for coxph objects, which
calculates several kinds of residuals.
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Cox-Snell residual

The i-th Cox-Snell residual is defined as

ri = − log(Ŝ0(ti))e
[
∑

b̂jxij].

These ri-values apply to survival distribution models in general. For the
Weibull proportional hazard model, the Cox-Snell residual values are

ri = (λ̂0t
γ̂
i )e

[
∑

b̂jxij]

using the hazards model estimates λ0, γ and the k estimated regression co-
efficients b̂j.

Modified Cox-Snell residual

For survival models such as the Weibull proportional hazards model, a resid-
ual value can be calculated for all observations (complete and censored). A
residual value for each observation is defined as mi = ri when the observation
ti is complete and mi = ri + 1 when the observation ti is censored.
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Martingale residual

The i-th martingale residual is defined as M̂i = δi − ri, where δi = 1 for
complete observation and δi = 0 for censored observation. The M̂i take val-
ues in (−∞, 1] and are always negative for censored observations. In large
samples, the martingale residuals are uncorrelated and have expected value
equal to zero. But they are not symmetrically distributed about zero.

Deviance residual

The deviance residuals are useful in detecting outliers. The ith deviance
residual under the extreme value model, is given by

Di = sign(ri)
√
−2(ri + δi log[δi − ri]).

where sign(ri) = −1 for ri < 0 and +1 otherwise.
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4.6 Accelerated failure time model

This model is a log-linear regression model for T . Y = log(T ) is modelled
as a linear function of the covariate x :

Y = x′β + Z∗,

where Z∗ has a certain distribution. Then

T = exp(Y ) = exp(x′β∗). exp(Z∗) = exp(x′β∗).T ∗

where T ∗ = exp(Z∗).
Suppose that T ∗ has hazard function λ∗

0(t
∗) which is free of the covariate

vector x. The hazard function of T for a given x can be written in terms of
the baseline function λ∗

0 according to

λ(t|x) = λ∗
0(exp(−x′β∗)t). exp(−x′β∗)). (42)
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The survivor function of T given x is

S(t|x) = exp

(
− exp(−x′β)

∫ t

0

λ∗
0(exp(−x′β∗)u)du

)
.

Change the integration variable to v = exp(−x′β∗)u. We have
dv = exp(−x′β∗)du and 0 < v < exp(−x′β∗)t. Then for the accelerated
failure time model,

S(t|x) = exp

(
− exp(−x′β)

∫ exp(−x′β)t

0

λ∗
0(v)dv

)

= S∗
0(exp(−x′β)t) = S∗

0(t
∗). (43)

where S∗
0(t) denotes the baseline survivor function. We notice that the

covariate x changes the scale of the horizontal (t) axis. For example, if x′β∗

increases, then the last term in expression (43) increases. In this case it has
decelerated the time to failure. This is why the log-linear model defined here
is called the accelerated (decelerated) failure time model.
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Remark 4.1

1. We have seen that the Weibull regression model, which includes the expo-
nential, is a special case of both the Cox PH model and the accelerated
failure time model. It can be shown that the only log-linear models that
are also PH models are the Weibull regression models.

2. Through the partial likelihood (Cox, 1975) we obtain estimates of the
coefficients β that require no restriction on the baseline hazard λ0(t). The
S function coxph implements this.

3. For the accelerated failure time models we specify the baseline hazard func-
tion λ0(t) by specifying the distribution function of Z∗.
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4.7 AIC procedure for variable selection

Comparisons between a number of possible models, can be made on the
basis of the statistic

AIC = −2× log(maximum likelihood) + k × p,

where p is the number of parameters in each model under consideration and
k a predetermined constant. This statistic is called Akaike’s (1974) infor-
mation criterion (AIC); the smaller the value of this statistic, the better
the model. Here we shall take k = 2. For other choice of values for k, see
the remarks at the end of this section.
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For the parametric models discussed, the AIC is given by

AIC = −2× log(maximum likelihood) + 2× (a + b), (44)

where a is the number of parameters in the specific model and b the number
of one-dimensional covariates. For example, a = 1 for the exponential model,
a = 2 for the Weibull, log-logistic, and log-normal models.

Motorette data example :

The data set given in Table 5 below was obtained by Nelson and Hahn (1972)
and discussed again in Kalbfleisch and Prentice (1980). Hours to failure of
motorettes are given as a function of operating temperatures 1500C, 1700C,
1900C, or 2200C. There is severe (Type I) censoring, with only 17 out of 40
motorettes failing. The primary purpose of the experiment was to estimate
certain percentiles of the failure time distribution at a design temperature
of 1300C. We see that this is an accelerated process. The experiment is
conducted at higher temperatures to speed up failure time.
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The authors use the single regressor variable x = 1000/(273.2+Tempera-
ture). They also omit all ten data points at temperature level of 1500 C. The
data is entered into a data frame called motorette. It contains

Table 5: Hours to failure of Motorettes.

Temperature Hours to failure

150C 8064+, 8064+, 8064+, 8064+,

8064+, 8064+, 8064+, 8064+,

8064+, 8064+

170C 1764, 2772, 3444, 3542, 3780,

4860, 5196, 5448+, 5448+,

5448+

190C 408, 408, 1344, 1344, 1440,

1680+, 1680+, 1680+, 1680+,

1680+

220C 408, 408, 504, 504, 504, 528+,

528+, 528+, 528+, 528+

n = 40 nu = number of uncensored =17
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Table 6: Results of fitting parametric models to the Motorette data.

Model log-likelihood AIC

exponential intercept only -155.875 311.750 + 2(1) = 313.750

both -151.803 303.606 + 2(1 + 1) = 307.606

Weibull intercept only -155.681 311.363 + 2(2) = 315.363

both -144.345 288.690 + 2(2 + 1) = 294.690

Log-logistic intercept only -155.732 311.464 + 2(2) = 315.464

both -144.838 289.676 + 2(2 + 1) = 295.676

Log-normal intercept only -155.681 310.036 + 2(2)= 314.036

both -145.867 291.735 + 2(2 + 1) = 297.735

We fit the exponential, Weibull, log-logistic, and log-normal models. The
log likelihood and the AIC for each model are reported in Table 6.

intercept only: y = log(t) = β̂∗
0 + σZ

both: y = log(t) = β̂∗
0 + β∗

1 + σZ

where the distributions of Z are standard extreme value, standard logistic, and
standard normal, respectively.
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The S code for computing the AIC for a number of specified
distributions

> attach(motorette) # attach the data frame motorette

# to avoid continually referring to it.

# Weibull fit

> weib.fit <- survReg(Surv(time,status)~x,dist="weibull")

> weib.fit$loglik # the first component for intercept

# only and the second for both

[1] -155.6817 -144.3449

> -2*weib.fit$loglik # -2 times maximum log-likelihood

[1] 311.3634 288.6898

113



# exponential fit

> exp.fit <- survReg(Surv(time,status)~x,dist="exp")

> -2*exp.fit$loglik

[1] 311.7501 303.6064

# log-normal fit

> lognormal.fit <- survReg(Surv(time,status)~x,dist="lognormal")

> -2*lognormal.fit$loglik

[1] 310.0359 291.7345

# log-logistic fit

> loglogistic.fit <- survReg(Surv(time,status)~x,dist="loglogistic")

> -2*loglogistic.fit$loglik

[1] 311.4636 289.6762

> detach() # Use this to detach the data frame when no

# longer in use.
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The Weibull model is to some extent preferable to the log-normal on ac-
count of the larger maximized log likelihood. From Table 6, we find that the
Weibull distribution provides the best fit to this data, the log-logistic distri-
bution is a close second, and the log-normal distribution is the third. When
there are no subject matter grounds for model choice, the model chosen for
initial consideration from a set of alternatives might be the one for which the
value of AIC is a minimum. It will then be important to confirm that the
model does fit the data using the methods for model checking.

Estimation and testing : the Weibull model

The S function survReg fits the times T as log-failure times Y = log(T )
to model

Y = β∗
0 + x′β∗ + σZ,

where Z has the standard extreme value distribution.
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Further, when we re-express Y as

Y = x′β∗ + Z∗,

where Z∗ = β∗
0 + σZ, and this model is an accelerated failure time model.

Here Z∗  extreme value with location β∗
0 and scale σ. The linear predictor

µ̃ given on page 96 is

µ̃ = − log(λ̃) = β∗
0 + x′β∗ (45)

with β∗
0 = − log(λ) and β∗ = −σβ, the vector β denoting the coefficients

in the Weibull hazard on page 96 and, σ = 1/α, where α denotes the Weibull
shape parameter.
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Let β̂∗
0 , β̂

∗ and σ̂ denote the MLE’s of the parameters. To test H0 : β∗
j =

β∗0
j , j = 1, · · · ,m, use

β̂∗
j − β∗0

j

s.e.(β̂∗
j )

❀ N (0, 1) under H0.

An approximate (1− α)× 100% confidence interval for β∗
j is given by

β̂∗
j ± zα

2
s.e.(β̂∗

j ),

where zα
2
is taken from the N (0, 1) table. Inferences concerning the intercept

β0 follow analogously.

At the point x = x0, the MLE of the (p×100)th percentile of the distribution
of Y = log(T ) is

Ŷp = β̂∗
0 + x′0β̂

∗ + σ̂zp = (1, x′0, zp)




β̂∗
0

β̂∗

σ̂
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where zp is the (p × 100)th percentile of the error distribution, which, in

this case, is standard extreme value. The estimated variance of Ŷp is

var(Ŷp) = (1, x′0, zp)Σ̂




1
x0
zp


 (46)

where Σ̂ is the estimated variance-covariance matrix of β̂∗
0 , β̂

∗ and σ̂. Then an
approximate (1−α)×100% confidence interval for the (p×100)th percentile
of the log-failure time distribution is given by

Ŷp ± zα
2
s.e.(Ŷp),

where zα
2
is taken from the N (0, 1) table. These are referred to as the

uquantile type in the S function predict. The MLE of tp is exp(Ŷp). To
obtain confidence limits for tp, take the exponential of the endpoints of the
above confidence interval.
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The function predict, a companion function to survReg, conveniently re-
ports both the quantiles in time and the uquantiles in log(time) along with
their respective s.e.’s. We often find the confidence intervals based on uquan-
tiles are shorter than those based on quantiles. See, for example, the results
at the end of this section.

Doing the analysis using S:

In S, we fit the model

Y = log(time) = β∗
0 + β∗

1x + σZ,

where Z has the standard extreme value distribution. the (p×100)th percentile
of the standard extreme (minimum) value distribution (see Table 4) is

zp = log(− log(1− p)).

The function survReg outputs the estimated variance-covariance matrix V̂
for the MLE’s β̂∗

0 , β̂
∗
1 , and τ̂ = log σ̂. However, internally it computes Σ̂ to

estimate the var(Ŷp).
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The following is an S program along with modified output. The function
survReg is used to fit a Weibull regression model. Then the 15th and 85th
percentiles as well as the median failure time are estimated with corresponding
standard errors. We also predict the failure time in hours at x0 = 2.480159,
which corresponds to the design temperature of 1300C.

> attach(motorette)

> weib.fit <- survReg(Surv(time,status)~x,dist="weibull")

> summary(weib.fit)

Value Std. Error z p

(Intercept) -11.89 1.966 -6.05 1.45e-009

x 9.04 0.906 9.98 1.94e-023

Log(scale) -1.02 0.220 -4.63 3.72e-006
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> weib.fit$var # The estimated covariance matrix of the

# coefficients and log(sigmahat).

(Intercept) x Log(scale)

(Intercept) 3.86321759 -1.77877653 0.09543695

x -1.77877653 0.82082391 -0.04119436

Log(scale) 0.09543695 -0.04119436 0.04842333

> predict(weib.fit,newdata=list(x),se.fit=T,type="uquantile",

p=c(0.15,0.5,0.85))

# newdata is required whenever

# uquantile is used as a type whereas quantile

# uses the regression variables as default.

# This returns the estimated quantiles in log(t)

# along with standard error as an option.
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# Estimated quantiles in log(hours) and standard errors in

# parentheses. The output is edited because of redundancy.

x=2.256318 7.845713 8.369733 8.733489

(0.1806513) (0.12339772) (0.1370423)

x=2.158895 6.965171 7.489190 7.852947

(0.1445048) (0.08763456) (0.1189669)

x=2.027575 5.778259 6.302279 6.666035

(0.1723232) (0.14887233) (0.1804767)

>predict(weib.fit,newdata=data.frame(x=2.480159),se.fit=T,

type="uquantile",p=c(0.15,0.5,0.85))

# Estimated quantiles in log(hours) at the new x value = 2.480159;

# i.e., the design temperature of 130 degrees Celsius.

x=2.480159 9.868867 10.392887 10.756643

(0.3444804) (0.3026464) (0.2973887)
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>sigmahat <- weib.fit$scale

>alphahat <- 1/sigmahat # estimate of shape

>coef <- weib.fit$coef

>lambdatildehat <- exp(- coef[1] - coef[2]*2.480159)

# estimate of scale

> pweibull(25000,alphahat,1/lambdatildehat) # Computes the

# estimated probability that a motorette failure time

# is less than or equal to 25,000 hours. pweibull is

# the Weibull distribution function in S.

[1] 0.2783054 # estimated probability

> Shat <- 1 - 0.2783054 # survival probability at 25,000

# hours. About 72% of motorettes are still working

# after 25,000 hours at x=2.480159; i.e., the design

# temperature of 130 degrees Celsius.

> xl <- levels(factor(x)) # Creates levels out of the distinct

# x-values.
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> ts.1 <- Surv(time[as.factor(x)==xl[1]],status[as.factor(x)==xl[1]])

# The first group of data

> ts.2 <- Surv(time[as.factor(x)==xl[2]],status[as.factor(x)==xl[2]])

# The second

> ts.3 <- Surv(time[as.factor(x)==xl[3]],status[as.factor(x)==xl[3]])

# The third

> par(mfrow=c(2,2)) # divides a screen into 2 by 2 pieces.

> Svobj <- list(ts.1,ts.2,ts.3) # Surv object

> qq.weibreg(Svobj,weib.fit) # The first argument takes

# a Surv object and the second a survReg object.

# Produces a Weibull Q-Q plot.

> qq.loglogisreg(Svobj,loglogistic.fit) # log-logistic

# Q-Q plot

> qq.lognormreg(Svobj,lognormal.fit) # log-normal Q-Q plot

> detach()
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Results:

• From summary(weib.fit), we learn that σ̂ = exp(−1.02) = 0.3605949

and ˆ̃µ = − log(ˆ̃λ) = β̂∗
0 + β̂∗

1x = −11.89 + 9.04x.

Thus, we obtain α̂ =
1

0.3605949
= 2.773195 and ˆ̃λ = exp(11.89 − 9.04 ×

2.480159) = 0.0000267056 at x = 2.480159. Note also that both the
intercept and covariate x are highly significant with p-values 1.4510−9 and
1.9410−23 respectively.

• It follows from Section 2 that the estimated hazard function is

λ̂(t|x) = 1

σ̂
t
1
σ̂−1(exp(− ˆ̃µ))

1
σ̂

and the estimated survivor function is

Ŝ(t|x) = exp
[
− exp(− ˆ̃µ)t)

1
σ̂

]
.
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• The point estimate β̂1 of β1 is −σ̂−1β̂∗
1 . A 95% C.I. for β1 based on the

delta method is given by [−37.84342,−12.29594]. Whereas the one based
on the common approach is given by

[−σ̂−1(10.82),−σ̂−1(7.26)] = [−29.92,−20.09]

where σ̂ = 0.3605949 and the 95% C.I. for β∗
1 is [9.04−1.96×0.906, 9.04+

1.96 × 0.906] = [7.26, 10.81]. It is clear that the latter interval is much
shorter than the former as it ignores the variability of σ̂.

• A 95% C.I. for λ based on the delta method is given by [−416023.7, 707626.3].
But this includes negative values, which is not appropriate because λ > 0.
Therefore, we report the truncated interval [0, 707626.3]. The one based
on the common approach is given by

[exp(8.04), exp(15.74)] = [3102.61, 6851649.6],

where the 95% C.I. for β∗
0 is [−11.89 − 1.96 × 1.966,−11.89 + 1.96 ×

1.966] = [−15.74,−8.04]. Although the common approach ends up with
an unreasonably wide confidence interval compared to the one based on the
delta method, this approach always yields limits within the legal range of λ.
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• At x = 2.480159, the design temperature of 1300C, the estimated 15th,
50th, and 85th percentiles in log(hours) and hours, respectively based on
uquantile and quantile, along with their corresponding 90% C.I.’s in hours
are reported in the following table.

Type percentile estimate std. err 90% LCL 90% UCL

uquantile 15 9.868867 0.3444804 10962.07 34048.36

50 10.392887 0.3026464 19831.64 53677.02

85 10.756643 0.2973887 28780.08 76561.33

quantile 15 19319.44 6655.168 9937.174 37560.17

50 32626.72 9874.361 19668.762 54121.65

85 46940.83 13959.673 28636.931 76944.21

The 90% C.I.’s based on uquantile, exp(estimate ± 1.645 × std.err), are
shorter than those based on quantile at each x value. However, we also sus-
pect there is a minor bug in predict in that there appears to be a discrepancy
between the standard error estimate for the 15th percentile resulting from
uquantile and ours based on the delta method which follows. The other two
standard error estimates are arbitrarily close to ours.
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Our standard error estimates are 0.3174246, 0.2982668, and 0.3011561 for
the 15th, 50th, and 85th percentiles, respectively. Applying the trivariate
delta method, we obtain the following expression:

var(ŷp) = var(β̂∗
0) + var(β̂∗

1)x
2
0 + z2pσ̂

2 var(log σ̂) (47)

+ 2x0Cov(β̂
∗
0 , β̂

∗
1) + 2zpσ̂Cov(β̂

∗
0 , log σ̂) + 2x0zpσ̂ Cov(β̂∗

1 , log σ̂)

• At the design temperature 1300C, by 25,000 hours about 28% of the mo-
torettes have failed. That is, after 25,000 hours, about 72% are still working.

• As α̂ =
1

σ̂
=

1

0.3605949
= 2.773195, then for fixed x the hazard function

increases as time increases. The covariate x is fixed at 2.480159 which
corresponds to the design temperature 1300C.

• The estimated coefficient β̂1 = −1

σ̂
β̂∗
1 = − 1

0.3605949
(9.04) = −25.06968 <

0. Thus, for time fixed, as x increases, the hazard decreases and survival
increases.
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• For x1 < x2,
λ(t|x2)
λ(t|x1)

= exp((x1 − x2)(−25.06968)).

For example, for x = 2.1 and x = 2.2
λ(t|2.2)
λ(t|2.1) = exp(0.1(−25.06968)) = 0.08151502.

Thus, for 0.1 unit increase in x, the hazard becomes about 8.2% of the
hazard before the increase. In terms of Celsius temperature, for 21.645
degree decrease from 202.99050C to 181.34550C, the hazard becomes about
8.2% of the hazard before the decrease.

• The Q-Q plots show that the Weibull fit looks slightly better than the log-
logistic fit at the temperature 1700C, but overall they are the same. On the
other hand, the Weibull fit looks noticeably better than the log-normal fit at
the temperature 1700C and is about the same at the other two temperatures.
This result coincides with our finding from AIC in Table 6; that is, among
these three accelerated failure time models, the Weibull best describes the
motorette data.
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