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Recall: Framework of linear models

Example

Test whether salt water impacts blood pressure in mice.

Experiment A

10 mice fed with plain water and 10 with salt water; and the
blood pressure (BP) measured.

BP = α + βX + ε

X = water type (categorical variable =⇒ Analysis of variance).
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Experiment B

20 mice fed with increasing concentration of salt in water start-
ing with plain water.

BP = α + βX + ε

X = salt concentration
quantitative variable =⇒ Linear regression.
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Experiment C

Increasing salt concentration in water administrated to mice and
number of death (N) is counted.

Log N = α + βX + ε

X = salt concentration (continuous variable),
N = count data =⇒ Poisson regression.
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Experiment D

Consideration of 10 mice that tolerate salt water and 10 other
for which BP is affected by salt water; Mg 2+ and Ca2+ mea-
sured.

Log P(T |Mg2+;Ca2+)
1−P(T |Mg2+;Ca2+)

= α + β1Mg 2+ + β2Ca
2+ + ε

=⇒Logistic regression.
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Experiment E

10 mice fed with plain water and 10 with salt water; but various
mice weight.

BP = α + βWeights + ε

α = γ0 + γ1X + ε

X = water type

=⇒ Analysis of covariance.
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Experiment F

10 mice fed with plain water and 10 with salt water; but various
weight and 3 different mothers.

BP = α + βX + λWeight︸ ︷︷ ︸+ γMother + ε︸ ︷︷ ︸
Fixed part Random part

↖↗
Linear mixed effect model
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Recall: Framework of linear models

Generalized linear mixed effect models

g(Y ) = α + βX︸ ︷︷ ︸+ γZ + ε︸ ︷︷ ︸
Fixed part Random part

g = link function

g(Y) = Y =⇒ Analysis of variance

g(Y) = log(Y) =⇒ Poisson models and its extensions

g(Y) = - 1
Y

=⇒ Gamma models

g(Y) = g(P(Y=1|X=x)) = log P(Y=1|X=x)
1−P(Y=1|X=x)

=⇒ Logistic models
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Introduction

Example 1

30 female rats were randomly assigned to receive one of three
doses (high, low,or control) of an experimental compound.

Objective: Comparison of the birth weights of pups from litters
born to female rats that received the high, low-dose to those
from control female.

Factor ”dose” is fixed whereas factor ”litter” is random.

⇒ Mixed model
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Example 2

An agronomic yield trial was set up on 56 different varieties
of wheat. The experimental units were organized according to
a randomized complete block design with four blocks. All 56
varieties of wheat were used in each block.

Objective: Comparison of the varieties of wheat based on their
yield.

Factor ”variety of wheat” is fixed whereas factor ”block” is
random.

⇒ Mixed model
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Introduction

Analysis of variance (ANOVA)

Applicable to mixed models

Same estimation procedure of fixed and random effects

Reduction of estimation bias by fixing the error term for
each main factor in order to compute Fisher statistic

Consequences: Some bias remained in the ANOVA model
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1861⇒ First known formulation of a one-way random-effects model (an
model with one random factor and no fixed factors) is that by Airy, which
was further clarified by Scheff in 1956.

Airy made several telescopic observations on the same night (clustered
data) for several different angles and analyzed the data separating the vari-
ance of the random night effects from the random within-night residuals.

1863 ⇒ Chauvenet calculated variances of random effects in a simple
random-effects model.

1947⇒ Eisenhart introduced the mixed model terminology and formally
distinguished between fixed- and random-effects models.

1990s onward⇒ Linear mixed models are becoming increasingly pop-
ular method.
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Statistical models for continuous outcome variables in
which fixed and random factors are present.

The residuals are normally distributed but may not be in-
dependent or have constant variance contrary to standard
linear models.
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Linear mixed effect models (LMEMs)

Study designs leading to data sets that may be appropriately
analyzed using LMEMs include:

1 Studies with clustered data, such as students in class-
rooms, or experimental designs with random blocks, such
as batches of raw material for an industrial process

2 Longitudinal or repeated-measures studies, in which sub-
jects are measured repeatedly over time or under different
conditions.
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Types of factors and their related effects

Fixed factor

A categorical or classification variable, for which the investigator
has included all levels (or conditions) that are of interest in the
study.
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Fixed factors might include:

qualitative covariates, such as gender

classification variables implied by:
- a survey sampling design, such as region or stratum
- a study design, such as the treatment method in a

randomized clinical trial

ordinal classification variables in an observational study,
such as age group.

Example: 3 varieties of maize compared in an experiment.
Factor ”variety” is fixed.
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Types of factors and their related effects

Random factor

A classification variable with levels that can be thought
of as being randomly sampled from a population of levels
being studied.

All possible levels of the random factor are not present in
the data set, but it is the researchers intention to make
inferences about the entire population of levels.



Types of factors and their related effects

Random factor

A classification variable with levels that can be thought
of as being randomly sampled from a population of levels
being studied.

All possible levels of the random factor are not present in
the data set, but it is the researchers intention to make
inferences about the entire population of levels.



Types of factors and their related effects

Random factor

Example:

We would like to analyze the effect of 3 diets on the mean daily
weight gain of 4 differents groups of 5 rabbits. Two factors are
the considered: ”diet” and ”group of rabbits”.

The first factor is fixed whereas the second is random.
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Fixed Factors versus Random Factors

In contrast to the levels of fixed factors, the levels of ran-
dom factors do not represent conditions chosen specifically
to meet the objectives of the study.

However, depending on the goals of the study, the same
factor may be considered either as a fixed factor or a ran-
dom factor.
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In addition, a nested factor is always random.

Its effects on the response variable are known as nested
effects.
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Fixed effects versus Random effects

Fixed effects, called regression coefficients or fixed-effect
parameters, describe the relationships between the depen-
dent variable and predictor variables (i.e., fixed factors or
continuous covariates).

Fixed effects may describe:
- contrasts or differences between levels of a fixed factor
(e.g., between males and females) in terms of mean res-
ponses for the dependent variable.

- the effect of a continuous covariate on the dependent
variable.

Fixed effects are assumed to be unknown fixed quantities.
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Random effects are random values associated with the lev-
els of a random factor (or factors).

They represent random deviations from the relationships
described by fixed effects.

For instance:

⇒ random intercepts (representing random deviations for a
given subject or cluster from the overall fixed intercept).

⇒ random coefficients (representing random deviations for
a given subject or cluster from the overall fixed effects).
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⇒ random intercepts (representing random deviations for a
given subject or cluster from the overall fixed intercept).

⇒ random coefficients (representing random deviations for
a given subject or cluster from the overall fixed effects).



Model specification

A linear mixed effect model is considered under the general frame-
work (hierarchical form):

(1)


yi = Xiβ + Ziγi + εi
γi ∼ N(0,Gi )
εi ∼ N(0,Σi )
γi and εi must be independent.

yi : vector of i th observation of the dependent variable;
Xi : known matrix of fixed observations ;
β: fixed coefficients ;
Zi : known matrix of random observations ;
γi : random coefficients ;
εi : error linked with the i th observation.
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Model specification

Example for model specification

Let consider the following dataset

Plot Block Variety Dose Yield
1 1 1 0 1.7
2 1 1 30 1.7
3 1 2 0 1.3
4 1 2 30 1.5
5 2 1 0 1.2
6 2 1 30 1.4
7 2 2 0 1.0
8 2 2 30 1.2
9 3 1 0 1.4
10 3 1 30 2.0
11 3 2 0 1.7
12 3 2 30 2.2
13 4 1 0 1.9
14 4 1 30 2.3
15 4 2 0 1.5
16 4 2 30 1.8
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

Under a Gaussian mixed model, we have:

y∼ N(Xβ,V ) with Vi (θk)=Σi+ZiGiZ
′
i , k = 1, . . . , q; i = 1, . . . , g

f (y) = 1

(2π)
n
2 |V |

1
2
exp{−0.5(y − Xβ)′V−1(y − Xβ)}

Vi (θk) =

(
Gi 0
0 Σi

)
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

The likelihood function for y is:

L(β, θ) =
n∏

i=1

f (yi )

Thus, the log-likelihood function is:

l(β, θ) = ln[L(β, θ)] = c − 1
2 ln(|V |)− 1

2(y −Xβ)′V−1(y −Xβ) (2)

∂l
∂β = X ′V−1y −X ′V−1Xβ = 0 (3)

∂l
∂θk

= 1
2{(y − Xβ)′V−1 ∂l

∂θk
V−1(y − Xβ)− tr(V−1 ∂V∂θk )} = 0

β̂ = (X ′V̂−1X )−1X ′V̂−1y
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

(3) ⇒ y ′P ∂V
∂θk

Py = tr(V−1 ∂V∂θk ) (4)

with P = V−1 − V−1X (X ′V−1X )−1X ′V−1 (5)

In Gaussian models, σ2i = σ2 (equality of variances) ⇒ Σ = σ2In
σ2 is the variance of residual error.

G =

g∑
i=1

τ2i ZiZ
′
i

τ2i represent the variance of the ith random component.

V = σ2In +
∑g

i=1 τ
2
i ZiZ

′
i (6)

and ∂V
∂σ2 = In; ∂V

∂τ2i
= ZiZ

′
i
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

(4) becomes{
y ′P2y = tr(V−1)
y ′PZiZ

′
iPy = tr(V−1ZiZ

′
i ) P is defined as in (5) (7)

Newton-Raphson algorithm for the computation of β and V.

Step 1. Compute β using OLE (Ordinary Least square Estimation).

V = Iq ⇒ β̂ = (X ′X )−1X ′y

Step 2. Use β̂ to compute l(β, θ) using (2).
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

Step 3. Compute σ̂2 and τ̂i
2(i = 1, . . . , g) from (7):{

ŷ ′P̂2ŷ = tr(V̂−1)

ŷ ′P̂ZiZ
′
i P̂ ŷ = tr(Z ′i V̂

−1Zi )

Step 4. Replace σ̂2 and τ̂i
2(i = 1, . . . , g) in (6) to compute V̂ .

Step 5. Compute a new β̂ using (3) and new l(β, θ) using (2).

Step 6. Repeat these steps until convergence. A convergence cri-
terion is linked with a slight change, about 10−9 in β̂ or 0.01 of
change in l(β, θ)



Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Maximum likelihood estimation (ML)

Step 3. Compute σ̂2 and τ̂i
2(i = 1, . . . , g) from (7):{
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in Gaussian models

Restricted Maximum likelihood estimation (REML)

The ML of the variance components are generally biased.

In the REML approach, estimation of fixed effects is suppressed to
have good estimation of the random effects (variance components)
and fixed effects are only estimated using ML (robust for non Gaus-
sian models).

Thus, under a Gaussian mixed model, we have:

lR(θ) = l(β, θ)− 1

2
ln|X ′V−1X |

Newton-Raphson algorithm for the computation of β and V.

The same procedure described above is used.
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in non-Gaussian models

REML and ML procedures

Two Non Gaussian models will be considered: ANOVA models
with non normal y and longitidunal models (repeated measures).

Non Gaussian ANOVA models

Quasi-Likelihood Method

In Quasi-Likelihood Method, the idea is to use normality-based
estimators of θ̂ using REML equations and compute β̂ using ML
equations. Then,

The REML equations are:
ŷ ′P̂2ŷ = tr(P)

ŷ ′P̂ZiZ
′
i P̂ ŷ = tr(Z ′iPZi )

The ML equations are:
X ′V̂ X β̂ = X ′V̂−1ŷ

ŷ ′P̂2ŷ = tr(V̂−1)

ŷ ′P̂ZiZ
′
i P̂ ŷ = tr(Z ′i V̂

−1Zi )
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ŷ ′P̂2ŷ = tr(V̂−1)
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Estimation of coefficients

Estimation of β and αi (i = 1, . . . , g) in non-Gaussian models

Longitudinal models (repeated measures over time)

Iterative weighted Least Squares

Balanced case

The Best Linear Unbiased Estimator (BLUE) for β is given by:

β̂BLUE = (X ′V̂−1X )−1X ′V̂−1y

where V̂ = diag(V̂0, . . . , V̂0);

V̂0i =
1

m

m∑
i=1

(yi − Xiβ)(yi − Xiβ)′.

V̂0i = V̂0

The Newton-Raphson algorithm is used to compute β̂ and V̂ .

Iterative Weighted Least square (I-WLS)
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Estimation of β and αi (i = 1, . . . , g) in non-Gaussian models

Longitudinal models (repeated measures over time)

Iterative weighted Least Squares
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Significant tests of the coefficients

These tests are used to test significance of βi and γi because
true values of these parameters are not available (iterative
process).

Wald test
It is often used to test significance of vector β and sometimes used
to test covariance parameters associated with random effects (γi )

In general, for each known matrix L(r,p):

H0 : L′β = 0 and H1 : L′β 6= 0

W = β̂L′(L(
∑
i

X ′i V̂i
−1

Xi )
−1L′)−1Lβ̂

W∼ χ2 distribution with rank(L) as the degree of freedom.
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Significant tests of the coefficients

t test
It is often used for testing a single fixed-effect parameter.

For each parameter βj of β a t test can be approximated. The two
hypotheses are the same as for the wald test.

H0 : L′β = 0 and H1 : L′β 6= 0

tobs =
β̂j√
v(β̂j)

v(β̂j) is obtained by linearizing Ĝ and R̂ in V̂ .
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Significant tests of the coefficients

Fisher test
F -test can be used to test linear hypotheses about multiple fixed
effects. In other words, it is used to test significance of vector β.

H0 : L′β = 0 and H1 : L′β 6= 0

F =
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∑
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′
i V̂i
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−1L′)−1Lβ̂

rank(L)

The number of degree of freedom of the numerator is equal to the
rank of matrix L.

The number of degree of freedom of the denominator is estimated
from observed data.
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Significant tests of the coefficients

Likelihood ratio test (LRT): The LRT can be used to test linear
hypotheses about fixed-effect parameters based on ML estimation.
However, when testing hypotheses about covariance parameters as-
sociated with random effects, REML estimation should be used.

Likelihood ratio (deviance, Neyman-Pearson)

λ = Statistic of likelihood ratio test

Under H0 λ = −2log LR
LC

λ = −2LR + 2LC → χ2
r

LR : max of the log likelihood under the reduced model H0

LC : max of the log likelihood under the complete model H1

df = df (LC )− df (LR)
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Overview on random intercept and random slope
models

Random intercept and random slope models

It belong to the general framework of multilevel models

Suppose a model in which:

j = 1, . . ., N blocks (e.g. two varieties of maize (A and B) are
considered within each block)

i = 1, . . ., nj subjects within the groups (e.g. experimental pot)

k = 1, . . ., pijk times of measurements (e.g. everyday or month)

Yij a numerical response variable (e.g. agronomic performance of
varieties in height, number of corncobs, yield)

xij explanatory variables (e.g. variety and block)

yij = β0j + β1Variety + β2jBlock + εij (1)
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Overview on random intercept and random slope
models

Random intercept and random slope models

It belong to the general framework of multilevel models

yij = β0j + β1Variety + β2jBlock + εij (1)

β0j depends on each block (1, . . ., N)

β1 is fixed in the population

β2j also depends on each block (1, . . ., N)

εij ∼ N(0, σ2) and independent
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It belong to the general framework of multilevel models

yij = β0j + β1Variety + β2jBlock + εij (1)

The intercept, β0j can be broken down into two parts:

An overall or average value of the intercept (constant): γ00

A block dependent part of the intercept: γ0j

Thus, β0j = γ00 + γ0j (2)
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It belong to the general framework of multilevel models

yij = β0j + β1Variety + β2jBlock + εij (1)

The slope, β2j can be broken down into two parts:

An overall or average value of the slope: Ψ00

A block dependent part of the slope: Ψ0j

Thus, β2j = Ψ00 + Ψ0j (3)

By replacing (2) and (3) in (1):

yij = (γ00 + γ0j) + β1Variety + (Ψ00 + Ψ0j)Block + εij
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If only γ0j are random parameters in the population
⇒ Random intercept model
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⇒ Random slope model
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yij = (γ00 + γ0j) + β1Variety + (Ψ00 + Ψ0j)Block + εij

If γ0j and Ψ0j are random parameters in the population
⇒ Random intercept and random slope model



Applications in R

Recall of fixed and random models

A < − as.factor(A) # for a non-categorical variable

B < − as.factor(B) # for a non-categorical variable

Two fixed factors: A and B

lm(Y ∼ A*B) or lm(Y ∼ A+B+A:B)

Two random factors: A and B

library(lmerTest) or require(lmerTest)

lmer(Y ∼ 1+(1|A)+(1|B)) # Restricted maximum likelihood

lmer(Y ∼ 1+(1|A)+(1|B), REML = FALSE) # Maximum
likelihood

The package ”nlme” is not used because of the nested order
implicitly considered between random factors.
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Applications in R

Recall of fixed and random models

Three fixed factors: A, B and C

lm(Y ∼ A*B*C) or lm(Y ∼ A+B+C+A:B+A:C+B:C+A:B:C)

Three random factors: A, B and C

library(lmerTest) or require(lmerTest)

lmer(Y ∼ 1+(1|A)+(1|B)+(1|C))
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Applications in R

Implementation of LMEMs

Function lme in package nlme

Function lmer in package lme4 or lmerTest

According to the fitting model, nlme (e.g. repeated measures)
or lme4 and lmerTest (e.g. cluster data) will be preferred!

Two factors: A fixed and B random

- Full model

lmer(Y ∼ A + (1|B) + (1|A:B))

- Random intercept and random slope model

lme(Y ∼ A, random = ∼A|B)
lmer(Y ∼ A + (A|B))

- Random intercept model

lme(Y ∼ A, random = ∼1|B)
lmer(Y ∼ A + (1|B))
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Two factors: A fixed; B nested in A

- Random intercept and random slope model

lme(Y ∼ A, random = ∼1+A|B)
lmer(Y ∼ A + (1+A|B))

- Random intercept model
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lmer(Y ∼ A + (1|B)) instead of lmer(Y ∼ A + (1|A/B))
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library(nlme) or require(nlme)

Random intercept model

model < − lme(response ∼ time * fixed factor, random = ∼ 1 |
random factor)

Random intercept and random slope model

model < − lme(response ∼ time * fixed factor, random = ∼ time |
random factor

The modeling of longitudinal error structure is done using the
correlation argument
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Comment of results

Case of lmerTest package

The fixed effects are analysed using probability values [Pr(> |t|)].

The random effects are analysed by:

Using the function rand followed by the name of the model in
bracket to get p-value

Comparing the variance of random factor (σ2r ) to the one of
experimental error (σ2e )

If p-value < α (0.05) or σ2r ≥ σ2e , the random effect is signifi-
cant. It must be considered in the model.

If p-value ≥ α (0.05) or σ2r < σ2e , the random effect is not
significant. A standard linear model can be considered instead
of linear mixed effect model.
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Applications in R

Exercise 1

Four leaves were randomly sampled from a larger population of
leaves and four discs were taken from each leaf. The calcium con-
tents were measured (see worksheet 1).

Test first of all effect of leaves and then effects of leaves and discs
using R (maximum likelihood estimation and restricted maximum
likelihood estimation) and compare their outputs.
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Exercise 2

Four plants were randomly sampled from a larger population of
plants, and three leaves were randomly taken from each plant, and
two discs were taken from each leaf. The calcium Contents were
measured. (See worksheet 2.).

Test effect first of all effect of plants and leaves and then effect
of plants, leaves and discs using R (maximum likelihood estimation
and restricted maximum likelihood estimation) and compare their
outputs.
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Exercise 3

A pig farmer wants to compare the genetic quality of male pigs. He
has five sires and 10 dams, and allocates two dams to each sire. The
weight of two piglets per litter is then monitored and their weight
gain over a 2-week period was measured.

Test effect of sire and dams using R (maximum likelihood estimation
and restricted maximum likelihood estimation) and compare their
outputs.
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Exercise 4

Glycogen was measured on 2 rats allocated per Treatment (3 treat-
ments were considered). Each rats liver was cut into 3 pieces and
each piece was further divided into two.

Test effect of treatment, rat and liver on the glycogen using R (max-
imum likelihood estimation and restricted maximum likelihood esti-
mation) and compare their outputs.
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