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GOALS
@ Introduce basic concepts of infectious diseases
@ Derive the epidemic and endemic SIR models
@ Explain approaches used to describe the transmission term

@ Describe basic insights of infectious disease dynamics provided
by the simple deterministic STR models.

@ Explain the difference between the basic and effective
reproduction numbers and when each of them is useful

@ Introduce realism and hence more complexity

@ Compute of the basic reproduction number
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Warning!

All models are wrong, but some are
useful.
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Diseases

@ Disease:
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Diseases .

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction
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Diseases N

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases
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Diseases S

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases
e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
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Diseases S

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome
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Diseases e

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
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Diseases B

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
o Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
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Diseases B

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases
e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
o Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis

@ What are some examples of non-infectious disease?
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Diseases B

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
o Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis

@ What are some examples of non-infectious disease?
o Cancer, Diabetes, Heart diseases, chronic lung diseases
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Diseases B

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
o Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis

@ What are some examples of non-infectious disease?
o Cancer, Diabetes, Heart diseases, chronic lung diseases

@ What is the difference between infectious and non-infectious
diseases?
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Diseases B

o Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

@ List some examples of diseases

e Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
e Cancer, Diabetes, Irritable Bowel Syndrome

o List some examples of infectious diseases
o Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis

@ What are some examples of non-infectious disease?
o Cancer, Diabetes, Heart diseases, chronic lung diseases

@ What is the difference between infectious and non-infectious
diseases?
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NON-INEECTIOUS DISEASE

DISEASE THAT IS NOT CONTAGIOUS OR SPREADABLE

Physical

Mectivity diets
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Infectious diseases
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Infectious diseases

o Infectious disease: Caused by an organism (pathogen) which
has entered another organism'’s body
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Infectious diseases

o Infectious disease: Caused by an organism (pathogen) which
has entered another organism'’s body

@ Pathogen: Micro or macro-organism that causes disease, e.g.,
viruses, bacteria, parasites, worms
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@ Micro-organisms

e Small, often single cells organisms

e Short generation time
e Attain large populations within hosts

o Dynamic unit is host infection/immune status
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Macro-organisms
o large

@ multiicellar

complex life cycles
@ Dynamic unit of interest is the parasite burden

@ e.g., nematodes, trematodes, ectoparasites and fungi.

Nematodes Trematodes Ectoparasites

hookworm Schistosoma mansoni western blacklegged tick
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@ Have been natural enemies of humans for long
@ Account for over 25% of mortalities worldwide

@ Account for about 75% of mortalities among world poorest
populations
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Example: Malaria
@ 212 million cases and 438 thousand deaths in 2015
@ 92% of mortalities in Africa
@ 70% of mortalities among children under 5

Countries endemic for malaria in 2000 and 2016

B Countries endemic for malaria, 20% B Countries endemic in 2000, no longer endemic in 2016
Countries not endermic for maloria, 2000 WM Not appicable

Source: WHO datobase
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Infectious diseases: |

Example: HIV

Prevalence of HIV among adults aged 15 to 49, 2016
By WHO region

Frevalence (%) by WHO regicn
Eastem Medisermanean: 0.1 [<0.1-0.1] Eurape: 0.4 [0.4-0.4]
Viestarn Pacific: 0.1 [=0.1-0.2] I ~mericas: 0.5 [0.4-0.5] | Global prevalence: 0.8% [0.7-0.9]
South-East Asea: 0.3 [0.2-0.3] I rica: 4.2 [3.7-4.8] T
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Infectious diseases

@ Hope to bury infectius disease burden by the 20th century
impeded by:

o Emergence of new diseases, e.g., HIV

Re-emergence of diseases, e.g., tuberculosis and malaria
e Emergence of drug-resistance

Infectious disease emergence (often of zoonotic origin)

o Climate change and environmental deterioration

Globalization
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o Endemic.
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@ Endemic. Disease has established itself with infection levels
not exhibiting wide fluctuations through time in a place.
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@ Endemic. Disease has established itself with infection levels
not exhibiting wide fluctuations through time in a place.

e Epidemic.
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@ Endemic. Disease has established itself with infection levels
not exhibiting wide fluctuations through time in a place.

e Epidemic. A rapid rise in infection levels beyond expectation
in a specific place.
Epidemic A rapid rise in the levels of

an infection beyond what is expected
for a given time and place.

Endemic: levels of infection do not
exhibit wide fluctuations through
time in a defined place.

No. of cases of a disease

"Endemic" "Epidemic"

Gordis: Episemioiogy, Sth Edition
Copyright &) 2008 by Saunders, an Imprint of Elsevier. Inc. All nghts reserved

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation




@ Endemic. Disease has established itself with infection levels
not exhibiting wide fluctuations through time in a place.
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@ Incidence: Number of new cases at a given time (emergent rate)
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@ Incidence: Number of new cases at a given time (emergent rate)

@ Prevalence: Proportion of diseased population
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et al. CROI 2009
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Infectious disease modeling

Represent systems or hypotheses in a mathematical/statistical language
Use mathematical/statistical technigues to study, test, and improve models

Understand
Epidemiology underlying
mechanisms

\ Identify areas of

b
uncertainty and aid on

‘“1—--‘__\7:: M O D E l_ experimental design

e Inform data collection
Contact = 3
structure Ea

Understand and
predict of temporal
and spatial patterns

Immunology

Predict effect/cost-
effectiveness of

interventions
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Mathematical models provide quantitative and qualitative
frameworks for linking different disease states of interest.

@ Provide insights on the complex processes and interactions
underlying disease-spread across time and space

@ Plan for outbreaks (predict the time course and impact of an
outbreak)

e Speed of spread, e.g., timing of an outbreak

o Severity, e.g., size of epidemic
o Identify areas of uncertainty where new knowledge is required
@ Inform the collection of data

@ Explore the efficacy of control interventions
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Scientifc approach versus Mgl

Modeling steps

= Formulate research =

Q o Background TN

S Q;V
Research
i

Formulate the rnndel

Model
Implementation

" ~ or Partially True ¢ Model Testing b
N % \I/‘
Report Results o o

//I;r’e:diction, optimiz&iﬁhh
Scientific method policy design
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Infection  Shedding Symptoms Death or recovery, or
onset onset onset immunity onset

l | | |

Incubation period Clinical disease Recovered

| T

Latent period Infectious period Removal,
immunity
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Table 3.1 Incubation, latent and infectious periods (in days) for a variety of
viral and bacterial infections. Data from Fenner and White (1970), Christie

(1974), and Benenson (1975)

Infectious Incubation Latent Infectious
disease period period period
Measles 8-13 6-9 6-7
Mumps 12-26 12-18 4-8
Whooping cough (pertussis) 6-10 21-23 7-10
Rubella 14-21 7-14 11-12
Diphtheria 2-5 14-21 2-5
Chicken pox 13-17 8-12 10-11
Hepatitis B 30-80 13-17 19-22
Poliomyelitis 7-12 1-3 14-20
Influenza 1-3 1-3 2-3
Smallpox 10-15 8-11 2-3
Scarlet fever 2-3 1-2 14-21
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Infection Transmission  Transmission
onset ends

l |

Infectious Recovered

Susceptible

L | J
I T

Latentperiod Infectious period Immunity
period
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Classification of individ_

In mosquitoes

Sporozoites

develo
ino t

Docysts develo, .
qng wall A<,

G

Sporozoites
igrate to
salivary glands

P icied up
A7 Life Cycle of /ﬁ\

. { Sporozoites
Malaria Un ."..,,med

with

Gametocytes / ; mosqulm
“blmk Liver stage

- '.:‘ cell stage
’ In humans
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Classification of individ_

e ; In mosquitoes
£3 levelo| = *
¥ gut wapil =% ) Sporozoites

(c develo
: ino t

Sporozoites
migrate to
salivary glands
Parasites
sucked up

A Life Cyc!e of A\

o . n ~  Sporozoites
Malaria y ;.".n,med

’ with
Gametocytes / ; mosqulto
od blmk Liver stage
- '.:‘ cell stage
In humans

@ Susceptible: Can contract disease but have not yet contracted it
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Classification of individ_

e ; In mosquitoes
£3 levelo _ e
Z gut wall = ] Sporozoites

(c develo
: ino t

Sporozoites
migrate to

salivary glands
Parasites

AR Life Cycle of /ﬁ\

: % Sporozoi
© Malaria )V infected
Gametocytes / ; ‘mwols:‘ulm
; od blmk Liver stage
:'.:‘ cell stage
In humans
@ Susceptible: Can contract disease but have not yet contracted it

@ Exposed: Have contracted disease but cannot spread it (might or
might not exhibit symptoms)
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Oocysts develop e
gut

In mosquitoes
v

wall = 8 Sporozoites
< develo
. ino t

Sporozoites
migrate to
salivary glands
Parasites

" UAR Life Cycle of ﬂ_\

. .- ~  Sporozoites
© Malaria )V injected
| with
Gametocytes / ; mmqulto
Rad b|m§ Liver stage
™ cell stage
In humans

@ Susceptible: Can contract disease but have not yet contracted it

@ Exposed: Have contracted disease but cannot spread it (might or
might not exhibit symptoms)

@ Infectious: Can spread disease
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Docysts dwu:nhp e

In mosquitoes
wall ‘=% 3 Sporozoites

Sporozoites

migrate to
salivary glands
Parasites
sucked up

M Life Cycle of %

e RN
R R e S G #é_."r v

| with

. S| t
© Malaria IV infecind
Gametocytes / ; mmqulto
Rad b|m§ Liver stage
- -.:‘ cell stage
In humans

@ Susceptible: Can contract disease but have not yet contracted it

@ Exposed: Have contracted disease but cannot spread it (might or
might not exhibit symptoms)

@ Infectious: Can spread disease

@ Recovered: Cleared of infection, immune, death, etc.
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@ Infection and disease timeline data

e Latent period: time from infection to transmissibility

o Infectious period: duration (and intensity) of shedding
infectious stages

e Duration of the immunity: how long and how effective? etc.

@ Population data
e Population size and structure
e Birth and death rates, survival, immigration and emigration
o Rates of contact within and between population groups
o Transmission mode
o Epidemiological data
o Transmissibility

o density dependence, seasonality
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e Statistical models (regressions, time series)

e Explore correlations and patterns in data
o Examples

o Univariate linear models

o Multivariate linear models

o Generalized linear models

o Generalized linear and mixed models, etc.
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e Statistical models (regressions, time series)

e Explore correlations and patterns in data
o Examples

@ Univariate linear models
@ Multivariate linear models
o Generalized linear models

o Generalized linear and mixed models, etc.

o Dynamic models: Explore processes that evolve with time

o Deterministic: No randomness

o Stochastic: Randomness is important, explore outcomes,
obtain distributions of outcomes.

o Network

o Individual or agent based
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Further breakdown of dyna_

Continuous versus discrete models

e Continuous time, deterministic dynamics: Ordinary and
partial differential equations

o Discrete time, deterministic dynamics: Difference
equations, e.g., Reed-Frost type models

e Continuous time, stochastic dynamics: Continuous time
Markov chains, stochastic differential equation.

o Discrete time, stochastic dynamics: Discrete time Markov
chains
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@ Deterministic progression

e Same outcome for same parameters and initial conditions

@ Useful for a quick assessment of possible model outcomes and
when there is limited data

@ Relies on simplifying assumptions that must be tracked

e Assumes large populations. Can be misleading for small
populations

e Assumes constant rates. Can fail to reproduce important
(observed) dynamics for variable rates

o Homogeneity within compartments
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Which model is

What kind of model do | need?

shutterstouck

It depends on the question you
want to answer
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VIDEO: The model

VIDEQO: Proof
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o Compartmental models: Individuals are subdivided into
broad subgroups (compartments) and the model tracks
changes overtime for these individuals collectively.

e Variables: Entities that change overtime)

o Susceptible ()
o Infectious (I)

o Recovered (R)

@ Parameters: Contact and transition rates
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@ Describe outbreaks
@ Considers only flows related to the infection

Fe-== === 1
1
1
A Y
Transmission Recovery
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@ Describe outbreaks
@ Considers only flows related to the infection

Al 14

Transmission Recovery

@ \: Force of infection (per capita transmission rate)
@ v: Per capita recovery rate
@ 1/~: Average duration of infection
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@ Describe outbreaks
@ Considers only flows related to the infection
Al Y
Transmission Recovery
@ \: Force of infection (per capita transmission rate)
@ v: Per capita recovery rate
@ 1/~: Average duration of infection
. . as .
Change in susceptibles : i —transmission
. . dl .
Change in Infectious : & = +transmission — Recovery
. dR
Change in Removed : e + Recovery
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4

Transmission Recovery
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4

Transmission Recovery

Force of infection \
@ Mass action (density-dependent):

e Per capita contact rate is a function of population density
e Per capita force of infection rises with density of infectious
o Assumes homogeneous mixing
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4

Transmission Recovery

Force of infection \

@ Mass action (density-dependent):
e Per capita contact rate is a function of population density
e Per capita force of infection rises with density of infectious
o Assumes homogeneous mixing

@ Depends on
o the number of infectious individuals, I,
e contact between individuals, ¢, and
e probability that a contact leads to transmission, p

e A=cpl =041
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4

Transmission Recovery
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4

Transmission Recovery

Force of infection \
@ Frequency-dependent

o Per capita force of infection rises with prevalence (frequency of
infectives)
o Assumes homogeneous mixing
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4

Transmission Recovery

Force of infection \
@ Frequency-dependent

o Per capita force of infection rises with prevalence (frequency of
infectives)
o Assumes homogeneous mixing

° \=p+%
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The SIR compartme

Table 1. Some proposed forms for the transmission function

Number Function® Comments Ref
1 Bst Mass action 4-7
2 psin Frequency-dependent transmission 13
3 psem Power relationship; Constants: 0 < p < 1, 0 < g < 1. Phenomenological 23,
4 BI(N - Kg): | < gN Constant: 0 < g < 1. Embodies a refuge effect (g - proportion of the 16.
0:/zgN population potentially susceptible, because of spatial or other
heterogeneities)
5 kSIn ( T+ lﬂ ] Negative binomial. Small k corresponds to highly aggregated 23,
k infection. As k — o=, expression reduces to 35/ (mass action)
6 N f(S_U Asymptotic contact function separated from the mixing term F(S.1), 28,
1-e+eN N which may be any of those above, If constant e = 0, contacts are
proportional to N. If ¢ = 1, contacts are independent of N
7 cf_fld Asymptatic transmission. ¢ is a constant 43

“is the density of infected hosts, Sis the density of susceptible hosts, and N is the total host density. f is the transmission rate. Other
parameters, where necessary, are identified under comments.

McCallum et al. Trends Ecol Evol 16: 295-300 (2001)
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4

Transmission Recovery
Basic assumptions

o Closed population (no demography). Realistic for a quick
disease of short duration

@ Homogeneous mixing

@ Disease confers life-long immunity (realistic for certain
diseases,e.g., acute diseases like measles)

o Infected individuals are also infectious

@ Rates remain constant
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Transmission Recovery

— S

0.9 — |

— R

ds
- = ]S 0.71
dt A

dil
E o pIS—y
dt IB 7 2 o3l

Infectious and
o
o
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@ Threshold phenomenon

e I(0) infectious introduced into a population of S(0)
susceptible individuals

o Equation for infectious: 4 = BIS —~vI = BI(S — 3)
o What happens if S(0) > ~v/57
o What happens if S(0) < v/57

o “Threshold phenomenon” (Kermack and McKendrick, 1927):
Initial proportion of susceptibles must be greater than a critical
threshold for the disease to spread.

o 7/f: relative removal rate — should be small enough to allow
for disease invasion
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@ [ starts increasing if

1(0) = BI(0)(S(0) —~/8) >

or
BS5(0)/v>1

o [ starts decreasing if

1(0) = BI(0)(S(0) —v/B) < 0

or
BS5(0)/v <1
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Basic Reproduction nu

Average number of secondary cases generated by a single infectious
individual through out the period within which the individual is infectious.

Generation

@ Q0
: [ ) &—0<--O
® ‘0\0

Initial phase of epidemic (R, = 3) Disease is endemic (R = 1)

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Basic Reproduction nu

Average number of secondary cases generated by a single infectious
individual through out the period within which the individual is infectious.

Generation

@ Q0
: [ ) &—0<--O
® ‘0\0

Initial phase of epidemic (R, = 3) Disease is endemic (R = 1)
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Basic Reproduction nu

Average number of secondary cases generated by a single infectious
individual through out the period within which the individual is infectious.

Generation

@ Q0
: [ ) &—0<--O
® ‘0\0

Initial phase of epidemic (R, = 3) Disease is endemic (R = 1)

o Disease spreads when Ry > 1
@ Disease dies out when Ry <1
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Disease Transmission Ry
Measles Airbome 12-18
Diphtheria Saliva 6-7
Smallpox Airbome droplet 57
Polio Fecal-oral route 57
Rubella Airbome droplet 57
Mumps Airbome droplet 47
HIV/AIDS Sexual contact 2-5

Pertussis Airbome droplet | 5.5

SARS Airbome droplet 2-5

asis mmw Ambome droplet | 2-3
| BedtyB | 1525

Kretzschmar M et al. (2010), Wallinga J, Teunis P (2004), Mills CE et al. (2004), Althaus CL (2014), CDC, WHO
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Al 14

Transmission Recovery

Ry = Production rate of new infections by infectious individuals
in a completely susceptible population
X
fraction of new infected individuals who become infectious
X

average duration of the infectious period

= B><1><l
v
_ B
7
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@ Average number of secondary infections in a population in which
not everybody is susceptible (i.e., a population with some immunes)
per infectious individual throughout the period within which the
individual can transmit the disease.

Transmission

No transmission

@ Immune

@ Infectious
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R = Production rate of new infections by infectious individuals

in a population in which not everybody is susceptible
X

fraction of new infected individuals who become infectious

X

average duration of the infectious period

1
= f\fxlxv
T
= ON
OR:%RO
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Susceptible o
nfectious o
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E 2.
: 0w
4 g
aQ b3t
L
K =
=
. —R
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= —Infectious - =R =
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o
[
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Time Time
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@ To get rid of disease, R <1

. S 1
e Thatis, & SR—O

@ What proportion must be vaccinated?

o If P, is the immune proportion, then

P, = 1—%
1

> 1-—

> o8

Y Pv Z R;)%gl

@ Not everybody must be vaccinated to stop transmission
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Disease elimination threshold (&

measles
*® pertussis
chickenpox

® diptheria
® mumps

® rubella
® poliomyelitis

15 20
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o Disease invasion in a closed population: Disease only
invades if S > Ri.
0

@ Vaccination policy:Eradication might be possible if S < ]%'

@ Outbreak peaks: R =1

@ Proportion of population to vaccinate: P, > R}O{fgl
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@ Describe infection over long periods
@ Considers flows related to the infection

o Considers flows related to demographic changes

A it !
o
Transmission Recovery
T H H

o A = u(S+ I+ R) if the population size is constant

@ Assumes no vertical transmission
@ Assumes no disease-related deaths

@ Assumes that disease confers permanent immunity
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Transmission Recovery

1 T
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Al Poomomooo '
A Y
Transmission Recovery
U U

@ A: Recruitment rate

@ u: Per capita mortality rate
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Al Poomomooo '
A Y
Transmission Recovery
U U

@ A: Recruitment rate
@ u: Per capita mortality rate

as

X — A—BIS-—
dl

— = BIS-— I
g BIS — (v+ wl,
dR

= — A~ =

T I — pR,
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il @
Transmission Recovery
u “ “

1200
dS 1000 = = = == = = = = = = = = = = = o
— = A-pBIS—uS, 5 800
dt % 600 S tible, S
= —Susceptible,
dI IS I a —Infectious, I
E— = — o —Recovered, R
dt ﬂ (f)’ + ,J') 2 R 400 - Tst;)lvil;pulation, N
dR 200
— = vl —puR, .

dt 0 100 200 300
Time in days
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@ Equilibrium points
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@ Equilibrium points

ds dl dR
w - % @Y w-

0.
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@ Equilibrium points

I
ds o A _, AR _

aw - % @Y =

@ Disease-free equilibrium

A
EO = (SS7IS7RS) = (;7()’0)
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@ Equilibrium points

ds dl dR
w - % @Y w-

@ Disease-free equilibrium

A
EO = (SS7IS7RS) = <H7O’O>

@ Endemic equilibrium

ey (AR (B A y(_B A
B = (5,1, K) (6 /3(7+uu 1)’5(7+MM 1))
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Local stability

@ Perturb system from equlibrium, E* = (S*, I*, R*) by setting
S=8"+s,I=1"+1i,R= R"+ r, where s,i,r are small.

@ Substitute in right hand sides of equations

@ Expand in a Taylor series and retain only linear terms to obtain

“ (B +p)  =BST 0\ (s
@ | _ BI*  BS*—(y+m) O i
% 0 ol — T

@ Seek solutions of the form
x(t) = ve®, x(t) = (s(t),i(t),r(t))".
e « is an eigenvalue of the 3 x 3 matrix
o What are the values of « for Ey?

o What are the values of « for E.?
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Local stability (short method)

@ Find Jacobian of system at equilibrium point,
E* = (5*,I*, R*). This is the same as the 3 x 3 matrix

e Find eigenvalues of Jacobian

@ Equilibrium is locally asymptotically stable if all eigenvalues
are negative

@ Equilibrium is unstable if at least one eigenvalue is positive
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Next generation matrix approach for computing R

o Equation(s) for disease classe(s): 4 = 8IS — (v + p)I

Vector of new cases: F' = (81S)

e Vector for transitions: V = ((y + p)I)

@ Matrix of new infections: F = (%—?(SS,IS,RS)) = (ﬁ%)

@ Matrix of transitions: V = (‘?TI;(S(’]‘,IS, RY) = (v + )

o Inverse of matrix of transitions: V=1 = ﬁ

o Next generation matrix: FV~! = M(Sﬁﬂ)

@ Spectrum of the next generation matrix: {%}

@ Spectral radius of the next generation matrix: Ry = _BA

w(y+m)
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0

__________ . Loss of immunity

4

Transmission Recovery

v I

@ Disease-related mortalies are not negligible (rate: v)
@ No permanent immunity, e.g., some STDs (immunity lost at rate 4)

@ 1/4: average duration of immunity

% — A+06R—BIS— uS,
dl

dR

— = ~I—(6
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0

__________ . Loss of immunity

Transmission Reco)ljery
U U
% — A+6R—BIS — uS,
% = BIS—(y+u+v),
e SR

@ What is the basic reproduction number?

@ What are the equlibria of the system?
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A | il 1
: g Y
A
H T u v i
1000 e
o o
— = A+OR—BIS— S, 0 e 1
‘;Et, — - Total population, $N
& — BIS—(u+0)E,
di
lI :f 400
‘d_t = oE—(y+p+rv)l, 300
IR 200
— = Al — (4 R, 100
" A —(6+p) '

0 50 100 150 200 250 300
Time in days
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Relaxing assumptions: The SEIRS modcl

d

d—f = A+6R— IS — usS,
dE

e BIS — (u+0)E,
dl

- = E-(y+p+u
dR

— = ~I— (6 .

7 =0+ R

@ What is the basic

reproduction number?

@ What are the equlibria of the system?
@ Determine the stability of the equilibria
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The Epidemic SIR vers

05 : . 1 .
Bo4p <08F
s g
2 g
Zost g),s—
i~ -
5 c
502 gu-
& 04p a22r
% s 0 50 100 150

Time Time
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05 . 1 ;
2o4r <08F
» 8 —SER
3 o
2 3 = SIR
i’, 03 E),S-
s -
5 c
502 gu-
? 01p §3-2'
% % 0 50 100 150

Time Time

@ The F class causes a time-delay as individuals must pass
through this class before contributing in disease transmission.

@ Both the epidemic SIR and SEIR models have the same basic
reproduction number and final epidemic size.
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@ The biology and history of some diseases are complex

@ Some diseases have chronic carriers (C)
@ Examples: hepatitis B, herpes, Salmonella

o Can transmit disease at low rates for many years, e.g.,
hepatitis B

o Might not transmit disease for a while, but might become
infectious again

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



S = A—(BI+€BC)S — usS,
I = (BI+€BC)S — (u+I,
C = ayl—(w+p)C,

R = (1—a)yI+wC — pR.
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@ Some infections exhibit seasonal behavior

@ Example: Measles

@ Incorporation of some seasonal forcing (sine or cosine wave)

§ = WS+I)-BO)S
I = 5(1&)%5—71.

o 3=p(t) = Bo(1+ Bicoswt)
e [y: Background or average transmission rate
o 0 < By < 1: amplitude of seasonality

o w: Period of forcing
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@ Multiple compartments may be useful under certain scenario

e Introducing multiple infectious compartments and hence
infectious periods might be important when we are interested
in having control over the distribution of the infectious period
as opposed to the assumption of exponential case when there
is a single infectious class

o Different susceptible classes might be necessary for infections
with much variation among different population groups.

e Multiple vaccinated or immune classes may be necessary when
we try to track immunity boosted by different vaccine doses

@ More subdivisions of the infectious class results in fast growth
rate and shorter epidemics.
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- -

=1

jl = <ZI> Tl’}/—i-ﬂ-i-y)fl,

I, = nyli1 — (ny+p+v);, i=2,3,4,...,n
R = nyl, — uR.
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P

Children (c)

[T :

Adult (a)

@ Two age-groups: children and adults

@ Childhood diseases, e.g., measles, whooping cough, mumps,
smallpox

@ 3 becomes a matrix and no longer a number

@ Implications of non-random mixing and Who Acquires
Infection From Whom (WAIFW) matrix
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Children (c)

b Aaa .
“ Adult (a) Ha

Sc = Ac - (ﬁchc + /BacIa)Sc - (ac + NC)SCa

jc = (ﬂcclc + BacIa)Sc - (Ozc + e + Ve + Vc)Im

Se = acSe— (Beale + Baala)Sa — p1aSa,

I = acde+ (Mool + Xaala)Sa — (Ha + Yo + V) L

smat, = (g o)
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Multigroup models

Multigroup models can be used to model:
@ risk structure
@ STDs

@ etc.
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@ Risk structure is essential for some diseases, e.g., STDs

@ STDs are different from other diseases in a number of ways:

o Restricted to the sexually active

o Carrier often asymptomatic during later stages of the infection
o Recovery upon treatment with the exception of HIV/AIDS

o Little or no acquired immunity

o Possibility of vertical /horizontal transmission for some STDs
e Appearance of new strains might be common

e Short incubation periods for many veneral diseases (with the
exception of AIDS), e.g., 3-7 days for gonorrhea compared to
the infectious period
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@ Hosts can be infected by different diseases and/or different
strains of the same disease

@ Examples

e Malaria: Plasmodium falciparum, vivax, ovale, malariae
o Dengue: 4 strains (DENV 1-4)

HIV: HIV-1 and HIV-2
Influenza
Salmonella, etc.

@ Strains differ on drug resistance, antigens and immune
response, virulence factors
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@ Strains of the same disease can interact with each other

@ Immunity to one strain might result in immunity to another strain

@ Two strains with complete cross-immunity
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@ Strains of the same disease can interact with each other

@ Immunity to one strain might result in immunity to another strain

@ Two strains with complete cross-immunity
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@ Strains of the same disease can interact with each other

@ Immunity to one strain might result in immunity to another strain

@ Two strains with complete cross-immunity

S = A— (B + B215)S — S,
I = PiLS—(u+m+w)h,
Iy = PobS— (u+72+wm)ls,
R = mlLi+vL-pR
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@ Some diseases can infect multiple hosts

o Examples

o Vector-borne diseases, e.g., malaria (parasite conveyed from
one-human to the other by mosquitoes)

e Zonotic diseases. Animal diseases that can also be spread to
humans, e.g., Ebola, West Nile Virus

@ Transmission matrix might no longer be symmetric
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s K 1 — R

AN » R

Keeling and Rohani 2008

S1 = Ay — (Buly + Bi12lz)S1 — p2Sy,

L = (Buli+ P12k)S1 — (1 + 7 + 1)1,
Ry = mh—mPR,

Sy = Ao — (Baols + B2111)S2 — 2,

Iy = (Boals+ B11)S2 — (p2 + 72 + v2) I,

Ry = 72l — paRo.
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Focus: Mosquito-borne infections

@ Mosquitoes do not recover from infection

@ Three parties involved

e The human (host)
e the mosquito (vector)

o the pathogen (disease agent)

@ Transmission matrix has zero diagonal entries

@ Transmission defined through mosquito biting rates and
transmission probabilities

@ Ratio of mosquitoes to humans important understanding disease
dynamics and in computing Ry
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@ Mosquitoes are vectors for many important human infections

@ Malaria

o Host: the human

o Vector: the female Anopheles mosquito

o Pathogen Plasmodium parasites (P. falciparum, P. vivax, P.
ovale, P. malariae)

@ Zika

o Host: the human
o Vector: Aedes aegypti and Aedes albopictus
o Pathogen: Zika virus

@ Dengue

o Host: the human
o Vector: Aedes aegypti
o Pathogen: 4 Dengue virus serotypes
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Vector-borne disease life cycle

Adult female mosquitoes require blood for egg production

1. Adult female mosquito bites an infectious human 3
UNINFECTED @ INFECTED
2. Incubation of parasite or virus within | \
the mosquito extrinsic incubation period f LM WeSeTion
é@ s %
/

is ~ 7-14 days (temperature dependent)

3. Infectious mosquito bites a susceptible human vecror
EXTRINSIC
INCUBATION

4. Parasite or virus incubates within human & é/ VECTOR TRANSMISSION

average intrinsic incubation period is ~ 4-5 days dL »
. . . . VECTOR INFECTION HUMAN INFECTION
average human infectious period is ~ 4-5 days

INTRINSIC
INCUBATION

Cycle repeats
Lifecycle involves the mosquito biting twice at appropriate times
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Ross model

I, = ablym(1—1p) — ypln,
I, = aclp(1 — 1) — pply.

m: Ratio of mosquitoes to humans

a: biting rate of mosquitoes

b: transmission from mosquitoes to humans
c: transmission from humans to mosquitos

1/~p: Average duration of infection in humans

1/p: Average mosquito life span

Developed for malaria but used as generic model for many
vector-borne diseases
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@ Metapopulation: Set of subpopulations grouped into various
patches connected by movement of individuals.

@ Useful tool for modeling diseases in which host are naturally
grouped into spatial subunits.

@ Spread of human infection best accounted for by movements
of individuals to and from home

@ Example: Simplified epidemic S| patch disease model

S1 = —BLS) +m2 Sy — my2Sy,
I = pBIiS1 4+ maila — mialy,
Sy = =152 +m12S51 — m2152,

I = BLSy+mialy — molo.
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@ Networks: Considers nature of individual disease transmission

@ Individuals are linked if infections can pass between them.
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children adults elderly

Susceptible Suscepnbm Suscepnbm

Exposed X Exposed

(14 days) (14 days)
Infectious Infectious Infectnous
+ (3-5 days) + (3-5 days) (3-5 days)
Recovered Recovered Recove red

@ Compartmental models: one compartment for one state

@ Each important class of hosts requires a compartment.
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@ Hosts are the agents

@ Each agent has a set of attributes, e.g., age, gender, disease
status, vaccination status.

@ Set of rules for how agents interact.

@ How disease spreads from infectious agents to susceptible
agents.

@ Conceptual diagrams from compartmental models can be used
to represent agent states.

@ Individual-based models: account for properties of individual
hosts and (spatial) interactions between individual hosts.
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* . s * » level of detail

realism

analytical power

Simple models Detailed,
eXity biology-rich model
no structure of Aedes aegypti :
well-mixed € Skeeter Buster
deterministic
X Difficult to analyze and simulate
f unlikely to yield g | insights or undi dii
X Many parameters: need to have very detalled
v Easy to analyze and simulate information on the system
/g::aln general ;nsoghts and understanding V/Ix Very specific to a given situation
ew parameters : oo ’
don't need detailed information on the system v Has the potential to‘ be more realistic pmvvdgd
that we have enough information to parameterize
X Highly simplistic o
unlikely to be realistic X Easy to be seduced by its apparent realism
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