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GOALS

Introduce basic concepts of infectious diseases

Derive the epidemic and endemic SIR models

Explain approaches used to describe the transmission term

Describe basic insights of infectious disease dynamics provided
by the simple deterministic SIR models.

Explain the difference between the basic and effective
reproduction numbers and when each of them is useful

Introduce realism and hence more complexity

Compute of the basic reproduction number
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Warning!

All models are wrong

But some are useful
George Box
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Diseases

Disease: Deviation from the normal physiological status of an
organism that negatively affects its survival or reproduction

List some examples of diseases

Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis
Cancer, Diabetes, Irritable Bowel Syndrome

List some examples of infectious diseases

Malaria, HIV/AIDS, Ebola, Diarrhea, Tuberculosis

What are some examples of non-infectious disease?

Cancer, Diabetes, Heart diseases, chronic lung diseases

What is the difference between infectious and non-infectious
diseases?
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Non-infectious diseases

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Infectious diseases

Infectious disease: Caused by an organism (pathogen) which
has entered another organism’s body

Pathogen: Micro or macro-organism that causes disease, e.g.,
viruses, bacteria, parasites, worms
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Infectious diseases: causative pathogen

Micro-organisms

Small, often single cells organisms

Short generation time

Attain large populations within hosts

Dynamic unit is host infection/immune status
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Infectious diseases: causative pathogen

Macro-organisms

large

multiicellar

complex life cycles

Dynamic unit of interest is the parasite burden

e.g., nematodes, trematodes, ectoparasites and fungi.
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Infectious diseases: impact

Have been natural enemies of humans for long

Account for over 25% of mortalities worldwide

Account for about 75% of mortalities among world poorest
populations
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Infectious diseases: impact
Example: Malaria

212 million cases and 438 thousand deaths in 2015
92% of mortalities in Africa
70% of mortalities among children under 5
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Infectious diseases: impact
Example: HIV
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Infectious diseases

Hope to bury infectius disease burden by the 20th century
impeded by:

Emergence of new diseases, e.g., HIV

Re-emergence of diseases, e.g., tuberculosis and malaria

Emergence of drug-resistance

Infectious disease emergence (often of zoonotic origin)

Climate change and environmental deterioration

Globalization
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Epidemiological disease patterns

Endemic. Disease has established itself with infection levels
not exhibiting wide fluctuations through time in a place.

Epidemic. A rapid rise in infection levels beyond expectation
in a specific place.

Epidemic A rapid rise in the levels of 
an infection beyond what is expected 
for a given time and place. 

Endemic: levels of infection do not 
exhibit wide fluctuations through 
time in a defined place.
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Incidence versus prevalence
Incidence: Number of new cases at a given time (emergent rate)

Prevalence: Proportion of diseased population

Weekly	number	of	cases	of	Ebola	in	West	Africa
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Infectious disease modeling
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Why model infectious diseases?

Mathematical models provide quantitative and qualitative
frameworks for linking different disease states of interest.

Provide insights on the complex processes and interactions
underlying disease-spread across time and space

Plan for outbreaks (predict the time course and impact of an
outbreak)

Speed of spread, e.g., timing of an outbreak

Severity, e.g., size of epidemic

Identify areas of uncertainty where new knowledge is required

Inform the collection of data

Explore the efficacy of control interventions
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Scientific approach versus modeling
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Infection and disease timeline

Infection 
onset

Incubation

Shedding 
onset

Latent period Infectious period

Clinical disease

Symptoms 
onset

Recovered

Death or recovery, or 
immunity  onset

Removal, 
immunity

period
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Infection and disease timeline

Infection 

Susceptible

Latent period Infectious period

Infectious

Transmission 
onset

Recovered

Transmission 
ends

Immunity  
period

Exposed
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Classification of individuals: Infection status

Susceptible: Can contract disease but have not yet contracted it

Exposed: Have contracted disease but cannot spread it (might or
might not exhibit symptoms)

Infectious: Can spread disease

Recovered: Cleared of infection, immune, death, etc.
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What is required to contruct an infectious model
Infection and disease timeline data

Latent period: time from infection to transmissibility

Infectious period: duration (and intensity) of shedding
infectious stages

Duration of the immunity: how long and how effective? etc.

Population data

Population size and structure

Birth and death rates, survival, immigration and emigration

Rates of contact within and between population groups

Transmission mode

Epidemiological data

Transmissibility

density dependence, seasonality
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Types of models
Statistical models (regressions, time series)

Explore correlations and patterns in data

Examples

Univariate linear models

Multivariate linear models

Generalized linear models

Generalized linear and mixed models, etc.

Dynamic models: Explore processes that evolve with time

Deterministic: No randomness

Stochastic: Randomness is important, explore outcomes,
obtain distributions of outcomes.

Network

Individual or agent based
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Further breakdown of dynamic models

Continuous versus discrete models

Continuous time, deterministic dynamics: Ordinary and
partial differential equations

Discrete time, deterministic dynamics: Difference
equations, e.g., Reed-Frost type models

Continuous time, stochastic dynamics: Continuous time
Markov chains, stochastic differential equation.

Discrete time, stochastic dynamics: Discrete time Markov
chains
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Deterministic models

Deterministic progression

Same outcome for same parameters and initial conditions

Useful for a quick assessment of possible model outcomes and
when there is limited data

Relies on simplifying assumptions that must be tracked

Assumes large populations. Can be misleading for small
populations

Assumes constant rates. Can fail to reproduce important
(observed) dynamics for variable rates

Homogeneity within compartments
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Which model is right for me?

What kind of model do I need?

It depends on the question you 
want to answer
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Epidemic theory simulation

VIDEO: The model

VIDEO: Proof
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Model formulation

Compartmental models: Individuals are subdivided into
broad subgroups (compartments) and the model tracks
changes overtime for these individuals collectively.

Variables: Entities that change overtime)

Susceptible (S)

Infectious (I)

Recovered (R)

Parameters: Contact and transition rates
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The SIR compartmental model: epidemic model

Describe outbreaks

Considers only flows related to the infection

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

λ: Force of infection (per capita transmission rate)

γ: Per capita recovery rate

1/γ: Average duration of infection

Change in susceptibles :
dS

dt
= −transmission

Change in Infectious :
dI

dt
= +transmission−Recovery

Change in Removed :
dR

dt
= +Recovery

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



The SIR compartmental model: epidemic model

Describe outbreaks

Considers only flows related to the infection

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

λ: Force of infection (per capita transmission rate)

γ: Per capita recovery rate

1/γ: Average duration of infection

Change in susceptibles :
dS

dt
= −transmission

Change in Infectious :
dI

dt
= +transmission−Recovery

Change in Removed :
dR

dt
= +Recovery

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



The SIR compartmental model: epidemic model

Describe outbreaks

Considers only flows related to the infection

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

λ: Force of infection (per capita transmission rate)

γ: Per capita recovery rate

1/γ: Average duration of infection

Change in susceptibles :
dS

dt
= −transmission

Change in Infectious :
dI

dt
= +transmission−Recovery

Change in Removed :
dR

dt
= +Recovery

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



The SIR compartmental model: epidemic model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Force of infection λ

Mass action (density-dependent):

Per capita contact rate is a function of population density
Per capita force of infection rises with density of infectious
Assumes homogeneous mixing

Depends on

the number of infectious individuals, I,
contact between individuals, c, and
probability that a contact leads to transmission, p

λ = cpI = βI
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The SIR compartmental model

McCallum	et	al.	Trends	Ecol	Evol 16:	295-300	(2001)
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The SIR epidemic model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Basic assumptions

Closed population (no demography). Realistic for a quick
disease of short duration

Homogeneous mixing

Disease confers life-long immunity (realistic for certain
diseases,e.g., acute diseases like measles)

Infected individuals are also infectious

Rates remain constant
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The SIR epidemic model
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SIR epidemic model

Threshold phenomenon

I(0) infectious introduced into a population of S(0)
susceptible individuals

Equation for infectious: dI
dt = βIS − γI = βI(S − γ

β )

What happens if S(0) > γ/β?

What happens if S(0) < γ/β?

“Threshold phenomenon” (Kermack and McKendrick, 1927):
Initial proportion of susceptibles must be greater than a critical
threshold for the disease to spread.

γ/β: relative removal rate – should be small enough to allow
for disease invasion
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I starts increasing if

İ(0) = βI(0)(S(0)− γ/β) > 0

or
βS(0)/γ > 1

I starts decreasing if

İ(0) = βI(0)(S(0)− γ/β) < 0

or
βS(0)/γ < 1
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Basic Reproduction number, R0

Average number of secondary cases generated by a single infectious

individual through out the period within which the individual is infectious.

Disease spreads when R0 > 1
Disease dies out when R0 ≤ 1

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Basic Reproduction number, R0

Average number of secondary cases generated by a single infectious

individual through out the period within which the individual is infectious.

Disease spreads when R0 > 1
Disease dies out when R0 ≤ 1

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Basic Reproduction number, R0

Average number of secondary cases generated by a single infectious

individual through out the period within which the individual is infectious.

Disease spreads when R0 > 1
Disease dies out when R0 ≤ 1

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Basic reproduction numbers for some diseases

Kretzschmar M et al. (2010), Wallinga J, Teunis P (2004), Mills CE et al. (2004), Althaus CL (2014), CDC, WHO
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The SIR epidemic model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

R0 = Production rate of new infections by infectious individuals

in a completely susceptible population

×
fraction of new infected individuals who become infectious

×
average duration of the infectious period

= β × 1× 1

γ

=
β

γ
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Effective reproduction number
Average number of secondary infections in a population in which
not everybody is susceptible (i.e., a population with some immunes)
per infectious individual throughout the period within which the
individual can transmit the disease.

Transmission

No transmission

Immune

Infectious
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Effective reproduction number

R = Production rate of new infections by infectious individuals

in a population in which not everybody is susceptible

×
fraction of new infected individuals who become infectious

×
average duration of the infectious period

=
βS

N
× 1× 1

γ

=
β

γ

S

N

R = S
NR0
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Effective reproduction number
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Proportion to vaccinate

To get rid of disease, R ≤ 1

That is, S
N ≤

1
R0

What proportion must be vaccinated?

If Pv is the immune proportion, then

Pv = 1− S

N

≥ 1− 1

R0

Pv ≥ R0−1
R0

Not everybody must be vaccinated to stop transmission
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Disease elimination threshold (through vaccination)
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Importance of R0 and R

Disease invasion in a closed population: Disease only
invades if S > 1

R0
.

Vaccination policy:Eradication might be possible if S < 1
R0

.

Outbreak peaks: R = 1

Proportion of population to vaccinate: Pv ≥ R0−1
R0
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The endemic model

Describe infection over long periods

Considers flows related to the infection

Considers flows related to demographic changes

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Λ

𝜇 𝜇𝜇

Λ = µ(S + I +R) if the population size is constant

Assumes no vertical transmission

Assumes no disease-related deaths

Assumes that disease confers permanent immunity

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



The endemic SIR model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Λ

𝜇 𝜇𝜇

Λ: Recruitment rate

µ: Per capita mortality rate

dS

dt
= Λ− βIS − µS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= γI − µR,
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The endemic SIR model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
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The endemic SIR model

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

Λ

𝜇 𝜇𝜇

Λ: Recruitment rate

µ: Per capita mortality rate

dS

dt
= Λ− βIS − µS,

dI

dt
= βIS − (γ + µ)I,

dR

dt
= γI − µR,
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The endemic SIR model
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The endemic SIR model: analysis

Equilibrium points

dS

dt
= 0,

dI

dt
= 0,

dR

dt
= 0.

Disease-free equilibrium

E0 = (S∗
0 , I

∗
0 , R

∗
0) =

(
Λ

µ
, 0, 0

)

Endemic equilibrium

Ee = (S∗
e , I

∗
e , R

∗
e) =

(
γ + µ

β
,
µ

β

(
β

γ + µ

Λ

µ
− 1

)
,
γ

β

(
β

γ + µ

Λ

µ
− 1

))

=

(
γ + µ

β
,
µ

β
(R0 − 1) ,

γ

β
(R0 − 1)

)
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The endemic SIR model: analysis
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The endemic SIR model: analysis

Equilibrium points

dS

dt
= 0,

dI

dt
= 0,

dR

dt
= 0.

Disease-free equilibrium

E0 = (S∗
0 , I

∗
0 , R

∗
0) =

(
Λ

µ
, 0, 0

)

Endemic equilibrium

Ee = (S∗
e , I

∗
e , R

∗
e) =

(
γ + µ

β
,
µ

β

(
β

γ + µ

Λ

µ
− 1

)
,
γ

β

(
β

γ + µ

Λ
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The endemic SIR model: analysis

Local stability

Perturb system from equlibrium, E∗ = (S∗, I∗, R∗) by setting
S = S∗ + s, I = I∗ + i, R = R∗ + r, where s, i, r are small.

Substitute in right hand sides of equations

Expand in a Taylor series and retain only linear terms to obtain ds
dt
di
dt
dr
dt

 =

 −(βI∗ + µ) −βS∗ 0
βI∗ βS∗ − (γ + µ) 0
0 γ −µ

 s
i
r


Seek solutions of the form
x(t) = veαt,x(t) = (s(t), i(t), r(t))T .

α is an eigenvalue of the 3× 3 matrix

What are the values of α for E0?

What are the values of α for Ee?
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The endemic SIR model: analysis

Local stability (short method)

Find Jacobian of system at equilibrium point,
E∗ = (S∗, I∗, R∗). This is the same as the 3× 3 matrix

Find eigenvalues of Jacobian

Equilibrium is locally asymptotically stable if all eigenvalues
are negative

Equilibrium is unstable if at least one eigenvalue is positive
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The endemic SIR model: analysis

Next generation matrix approach for computing R0

Equation(s) for disease classe(s): dI
dt = βIS − (γ + µ)I

Vector of new cases: F = (βIS)

Vector for transitions: V = ((γ + µ)I)

Matrix of new infections: F =
(
∂F
∂I (S∗

0 , I
∗
0 , R

∗
0)
)

= (β Λ
µ )

Matrix of transitions: V =
(
∂F
∂I (S∗

0 , I
∗
0 , R

∗
0)
)

= (γ + µ)

Inverse of matrix of transitions: V−1 = 1
γ+µ

Next generation matrix: FV−1 = βΛ
µ(γ+µ)

Spectrum of the next generation matrix:
{

βΛ
µ(γ+µ)

}
Spectral radius of the next generation matrix: R0 = βΛ

µ(γ+µ)
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Relaxing assumptions: SIRS with disease-deaths

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

𝐿𝑜𝑠𝑠	𝑜𝑓	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦
𝛿

Λ

𝜇 𝜈 𝜇𝜇

Disease-related mortalies are not negligible (rate: ν)

No permanent immunity, e.g., some STDs (immunity lost at rate δ)

1/δ: average duration of immunity

dS

dt
= Λ + δR− βIS − µS,

dI

dt
= βIS − (γ + µ+ ν)I,

dR

dt
= γI − (δ + µ)R,
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Relaxing assumptions: SIRS with disease-deaths

S I R𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝛾𝜆

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦

𝐿𝑜𝑠𝑠	𝑜𝑓	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦
𝛿

Λ

𝜇 𝜈 𝜇𝜇

dS

dt
= Λ + δR− βIS − µS,

dI

dt
= βIS − (γ + µ+ ν)I,

dR

dt
= γI − (δ + µ)R,

What is the basic reproduction number?

What are the equlibria of the system?

Determine the stability of the equilibriaAfrican Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Relaxing assumptions: The SEIRS model
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Relaxing assumptions: The SEIRS model

S 𝜎
𝜆

𝛿
Λ

𝜇 𝜈 𝜇𝜇𝜇
E I R𝛾

dS

dt
= Λ + δR− βIS − µS,

dE

dt
= βIS − (µ+ σ)E,

dI

dt
= σE − (γ + µ+ ν)I,

dR

dt
= γI − (δ + µ)R.

What is the basic reproduction number?

What are the equlibria of the system?

Determine the stability of the equilibria
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The Epidemic SIR versus SEIR model

The E class causes a time-delay as individuals must pass
through this class before contributing in disease transmission.

Both the epidemic SIR and SEIR models have the same basic
reproduction number and final epidemic size.
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The Epidemic SIR versus SEIR model

The E class causes a time-delay as individuals must pass
through this class before contributing in disease transmission.

Both the epidemic SIR and SEIR models have the same basic
reproduction number and final epidemic size.
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Adding complexity: Models with a carrier state

S I R𝛼𝛾𝜆c

Λ

𝜇 𝜇𝜇

𝜆I

𝜔(1-𝛼)𝛾

𝜇C

The biology and history of some diseases are complex

Some diseases have chronic carriers (C)

Examples: hepatitis B, herpes, Salmonella

Can transmit disease at low rates for many years, e.g.,
hepatitis B

Might not transmit disease for a while, but might become
infectious again
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Adding complexity: Models with a carrier state

S I R𝛼𝛾𝜆c

Λ

𝜇 𝜇𝜇

𝜆I

𝜔(1-𝛼)𝛾

𝜇C

Ṡ = Λ− (βI + εβC)S − µS,

İ = (βI + εβC)S − (µ+ γ)I,

Ċ = αγI − (ω + µ)C,

Ṙ = (1− α)γI + ωC − µR.
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Epidemic cycles

Some infections exhibit seasonal behavior

Example: Measles

Incorporation of some seasonal forcing (sine or cosine wave)

Ṡ = µ(S + I)− β(t)
I

N
S,

İ = β(t)
I

N
S − γI.

β = β(t) = β0(1 + β1 cosωt)

β0: Background or average transmission rate

0 ≤ β1 ≤ 1: amplitude of seasonality

ω: Period of forcing

African Mathematical Schools 01/23/2018 Math. modeling for epidemiology, ecology, and conservation



Multi-compartments and time since infection

Multiple compartments may be useful under certain scenario

Introducing multiple infectious compartments and hence
infectious periods might be important when we are interested
in having control over the distribution of the infectious period
as opposed to the assumption of exponential case when there
is a single infectious class

Different susceptible classes might be necessary for infections
with much variation among different population groups.

Multiple vaccinated or immune classes may be necessary when
we try to track immunity boosted by different vaccine doses

More subdivisions of the infectious class results in fast growth
rate and shorter epidemics.
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Multi-compartments

S RI1 I2 I3

Ṡ = Λ− β

(
n∑
i=1

Ii

)
S − µS,

İ1 = β

(
n∑
i=1

Ii

)
S − (nγ + µ+ ν)I1,

İi = nγIi−1 − (nγ + µ+ ν)Ii, i = 2, 3, 4, . . . , n,

Ṙ = nγIn − µR.
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Age-structured models

𝑆, 𝐼, 𝑅,

𝑆- 𝐼- 𝑅-

Children (c)

Adult (a)

Two age-groups: children and adults

Childhood diseases, e.g., measles, whooping cough, mumps,
smallpox

β becomes a matrix and no longer a number

Implications of non-random mixing and Who Acquires
Infection From Whom (WAIFW) matrix
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Age-structured models

𝑆,
Λ,

𝐼, 𝑅,

𝑆- 𝐼- 𝑅-

𝜆,,
𝜆-,

𝜆,-
𝜆--

𝜇,

𝛾,
𝜈,𝜇,𝜇,

𝛾-
𝜇- 𝜇-

𝜇- 𝜈-
𝛼, 𝛼, 𝛼,

Children (c)

Adult (a)
Ṡc = Λc − (βccIc + βacIa)Sc − (αc + µc)Sc,

İc = (βccIc + βacIa)Sc − (αc + µc + γc + νc)Ic,

Ṡa = αcSc − (βcaIc + βaaIa)Sa − µaSa,
İc = αcIc + (λcaIc + λaaIa)Sa − (µa + γa + νa)Ia.

λ = β..I., β =

(
βcc βca
βac βaa

)
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Multigroup models

𝑆"
𝜋"

𝐼" 𝑅"

𝑆& 𝐼& 𝑅&

𝜆""
𝜆&"

𝜆"&
𝜆&&

𝜇"

𝛿"
𝛾"

𝜈"𝜇"𝜇"

𝛿&

𝛾&
𝜇& 𝜇&𝜇& 𝜈&

𝜋"𝜋"

𝜋& 𝜋&𝜋&

Multigroup models can be used to model:

risk structure

STDs

etc.
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Multigroup models, risk-structure, and STDs

Risk structure is essential for some diseases, e.g., STDs

STDs are different from other diseases in a number of ways:

Restricted to the sexually active

Carrier often asymptomatic during later stages of the infection

Recovery upon treatment with the exception of HIV/AIDS

Little or no acquired immunity

Possibility of vertical/horizontal transmission for some STDs

Appearance of new strains might be common

Short incubation periods for many veneral diseases (with the
exception of AIDS), e.g., 3-7 days for gonorrhea compared to
the infectious period
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Multi-strain models

Hosts can be infected by different diseases and/or different
strains of the same disease

Examples

Malaria: Plasmodium falciparum, vivax, ovale, malariae

Dengue: 4 strains (DENV 1-4)

HIV: HIV-1 and HIV-2
Influenza
Salmonella, etc.

Strains differ on drug resistance, antigens and immune
response, virulence factors
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Multi-strain models

Strains of the same disease can interact with each other

Immunity to one strain might result in immunity to another strain

Two strains with complete cross-immunity

S
I1

R
I2

Ṡ = Λ− (β1I1 + β2I2)S − µS,
İ1 = β1I1S − (µ+ γ1 + ν1)I1,

İ2 = β2I2S − (µ+ γ2 + ν2)I2,

Ṙ = γ1I1 + γ2I2 − µR.
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Ṡ = Λ− (β1I1 + β2I2)S − µS,
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Multi-strain models
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Multi-host models

Some diseases can infect multiple hosts

Examples
Vector-borne diseases, e.g., malaria (parasite conveyed from
one-human to the other by mosquitoes)

Zonotic diseases. Animal diseases that can also be spread to
humans, e.g., Ebola, West Nile Virus

Transmission matrix might no longer be symmetric
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Multiple host models

Keeling and Rohani 2008

Ṡ1 = Λ1 − (β11I1 + β12I2)S1 − µ2S1,

İ1 = (β11I1 + β12I2)S1 − (µ1 + γ1 + ν1)I1,

Ṙ1 = γ1I1 − µ1R1,

Ṡ2 = Λ2 − (β22I2 + β21I1)S2 − µ2S2,

İ2 = (β22I2 + β21I1)S2 − (µ2 + γ2 + ν2)I2,

Ṙ2 = γ2I2 − µ2R2.
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Multiple host models: Vector-borne diseases
Focus: Mosquito-borne infections

Mosquitoes do not recover from infection

Three parties involved

The human (host)

the mosquito (vector)

the pathogen (disease agent)

Transmission matrix has zero diagonal entries

Transmission defined through mosquito biting rates and
transmission probabilities

Ratio of mosquitoes to humans important understanding disease
dynamics and in computing R0
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Multiple host models: Mosquito-borne infections

Mosquitoes are vectors for many important human infections

Malaria

Host: the human
Vector: the female Anopheles mosquito
Pathogen Plasmodium parasites (P. falciparum, P. vivax, P.
ovale, P. malariae)

Zika

Host: the human
Vector: Aedes aegypti and Aedes albopictus
Pathogen: Zika virus

Dengue

Host: the human
Vector: Aedes aegypti
Pathogen: 4 Dengue virus serotypes
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Multiple host models: Mosquito-borne infections

Vector-borne disease life cycle

Adult female mosquitoes require blood for egg production

1.	Adult	female	mosquito	bites	an	infectious	human

2.	Incubation	of	parasite	or	virus	within	
the	mosquito	extrinsic	incubation	period	
is	~	7-14	days	(temperature	dependent)

3.	Infectious	mosquito	bites	a	susceptible	human

4.	Parasite	or	virus	incubates	within	human
average	intrinsic	incubation	period	is		~	4-5	days
average	human	infectious	period	is	~	4-5	days

Cycle	repeats

Lifecycle involves the mosquito biting twice at appropriate times
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Multiple host models: Malaria

Ross model

İh = abIvm (1− Ih)− γhIh,
İv = acIh(1− Iv)− µvIv.

m: Ratio of mosquitoes to humans

a: biting rate of mosquitoes

b: transmission from mosquitoes to humans

c: transmission from humans to mosquitos

1/γh: Average duration of infection in humans

1/µv: Average mosquito life span

Developed for malaria but used as generic model for many
vector-borne diseases
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Metapopulations

Metapopulation: Set of subpopulations grouped into various
patches connected by movement of individuals.

Useful tool for modeling diseases in which host are naturally
grouped into spatial subunits.

Spread of human infection best accounted for by movements
of individuals to and from home

Example: Simplified epidemic SI patch disease model

Ṡ1 = −βI1S1 +m21S2 −m12S1,

İ1 = βI1S1 +m21I2 −m12I1,

Ṡ2 = −βI2S2 +m12S1 −m21S2,

İ2 = βI2S2 +m12I1 −m21I2.
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Network models

Networks: Considers nature of individual disease transmission

Individuals are linked if infections can pass between them.
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Agent-based models

Compartmental models: one compartment for one state

Each important class of hosts requires a compartment.
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Agent-based models

Hosts are the agents

Each agent has a set of attributes, e.g., age, gender, disease
status, vaccination status.

Set of rules for how agents interact.

How disease spreads from infectious agents to susceptible
agents.

Conceptual diagrams from compartmental models can be used
to represent agent states.

Individual-based models: account for properties of individual
hosts and (spatial) interactions between individual hosts.
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Trade-off between complexity and tractibility
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